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Abstract
An alternative approach, which is consistent with the conventional approach

adopted by GW experimentalists and detectors biulders, is suggested to be used to
assure the detection of GW. The proposed approach suugests a procedure to search for
the square root of the amplitude of GW in the data of a single detector under certain
given condition on the length control systems.

1. Introduction
The question of detecting GW represents one of the fundamental questions

and a long standing challenge in Gravitational physics. Most of the main diffi-

culties facing the detection of GW are on the way to be overcome very recently
[cf. Saulson (2000), Ando et al. (2001, 2002), Kuroda et al. (2002) and Gonzales

(2003)]. Several collaborations are established to ensure that the recorded signals
by different detectors, with uncorrelated interinsic and stochastic noises, are due

to passing of GW through them [cf. Prodi (2000), Astone (2002), Sigg (2002),
Acernese (2002) and Willke (2002)]. In this paper, an alternative approach; which

is consistent with the conventional approach adopted by the existing and future
detectors biulders; is suggested.

2. Philoshophy of the approach

Since in any ground based GW experiment; the coordinate system at which
the bar (interfermoter’s arm) is fixed, coincides with the coordinate system at

which the measuring apparatus of the tiny changes (δx) in its proper (physical)
length l0; then due to the special theory of relativity, the known relation between

l0 and the relative length l; l = l0
√

1 − v2

c2
; becomes l = l0. Hence, the physical

(proper) length of a bar (arm) in any ground based GW experiment can be treated

as a scalar from the special relativistic point of view.
From the general relativistic point of view, the proper time (interval) of a

bar (arm) having two end points (x0
2, x

1
2, x

2
2, x

3
2) and (x0

1, x
1
1, x

2
1, x

3
1); situated in a

four dimensional general coordinate system (K); is defined as:

S = [gµν(x
µ
2 −xµ

1 )(xν
2 −xν

1)]
1
2 = [g00(x

0
2−x0

1)(x
0
2−x0

1)+gij(x
i
2−xi

1)(x
j
2−xj

1)]
1
2 (1)

where gµν is the metric tensor representing the gravitational background in which

a bar (arm) is swimming freely and i, j = 1, 2, 3. While it is defined in another
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coordinate system (K ′) as:

S ′ = [g′
µν(x

′µ
2 −x′µ

1 )(x′ν
2 −x′ν

1 )]
1
2 = [g′

00(x
′0
2 −x′0

1 )(x′0
2 −x′0

1 )+g′
ij(x

′i
2 −x′i

1 )(x′j
2 −x′j

1 )]
1
2

(2)

Since in any GW experiment, both systems having the bar (arm) and the mea-
suring apparatuses of δx and the time δx0 are coincident, then the general co-

ordinate transformation between both systems K, K ′ is given by xµ = x′µ and
gµν(K) = g′

µν(k
′) as well. Besides that, in the case of a single detector, x0 = x′0

and g00 = g′
00 then one can deduce that the pysical length of a bar (arm) reads

as:

L = [gij(x
i
2 − xi

1)(x
j
2 − xj

1)]
1
2 = [g′

ij(x
′i
2 − x′i

1 )(x′j
2 − x′j

1 )]
1
2 (3)

If a bar (arm) situated parallel to x- axis, then L reads as:

L = [g11(x
1
2 − x1

1)(x
1
2 − x1

1)]
1
2 (4)

Hence, the physical length of a bar (arm); which is situated parallel to x- axis;

L(δx, δt) can be treated as a scalar function of δx and δt; where δx is the tiny
changes in its length due to different sources of noise during time interval δt, or

equivalently due to any signal having a frequency band δω (δω = 1
δt

).

3. Methodology of the approach

It is possible to define; in general; the magnitude of the gradient of the
physical length L(δxµ); in the presence of any gravitational field described by the

covariant metric tensor gµν; as follows:

ML = (gµνLµLν)
1
2 (5)

where Lµ = ∂L
∂(δxµ)

and µ = 0, 1, 2, 3. Hence it is natural to define a covariant
function GL as follows:

GL =
dML

dS
=

1

ML
gµνLµ;σLνU

σ (6)

where S is the proper time, Lµ;σ is the covariant derivative of Lµ with respect to
(δxµ) and Uσ = d(δxσ)

dS
[cf. Melek (2002)]. If a bar (arm) is situated parallel to

the x- axis, then L(δxµ) will be function of δx and δt; i.e. L(δx, δt). In the case
of studying the effect of the GW on the magnitude of the gradient of the physical

length of a bar (arm), then gµν is calculated using the line element:

dS2 = dt2 − (1 + h(t, z))dx2 − (1 − h(t, z))dy2 − dz2 (7)

Therefore, using the line element (7) and carrying out the necessary manipulation
of the expression (6), the function GLcan be expressed as [Melek (2002)]:

GL =
(L2

0 − L2
1)

1
2

ML

d(L2
0 − L2

1)
1
2

dS
+

hL2
1

ML

[
1

L1

(
dL1

dS
) +

1

2h
(
dh

dS
)] (8)
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where
ML = (L2

0 − L2
1 + hL2

1)
1
2 , (9)

dL1

dS
=

∂L1

∂(δt)

d(δt)

dS
+

∂L1

∂(δx)

d(δx)

dS
(10)

and
dh

dS
=

∂h

∂t

dt

dS
+

∂h

∂t

dt

dS
(11)

4. Theoretical Considerations
It is worth to notice in the expression (8) that the theoretical condition

L2
0 = L2

1 or equivalently:
L1 = ±L0 (12)

leads to the following expression of GL

GL =
√

hL1[
1

L1

dL1

dS
+

1

2h

dh

dS
] (13)

or equivalently

GL = ±
√

hL0[
1

L0

dL0

dS
+

1

2h

dh

dS
] (14)

It is possible to reinterpret the condition (12) as a constraint on the variation

of L with respect to δx and its variation with respect to the frequency band δω

(δω = (δt)−1) causes the δx in the length L, as follows:

∂L

∂(δx)
= ±(δω)2 ∂L

∂(δω)
(15)

A decisive question should be raised about the experimental viability of

the constraint (15). This question may be formulated as follows:

”Whether the length control systems in the existing detectors may fulfill the
constraint (15) or not?”

[cf. the senstivity curves of TAMA and LIGO in Ando et al. (2001, 2002) and

in Gonzalez (2003a)]. The author hopes that the definite answer of this question
will come from the GW experimentalists and the detectors biulders.

5. Searching for
√

h of GW in the data of a single detector

Using the condition (12) in the original defenition of GL (6), one can get:

GL =
d
√

hL0

dS
(16)
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Therefore the expression (14) can be expressed as:

∆(
√

hL0)√
hL0

= ±[
∆L0

L0

+
∆h

2h
] (17)

Since ∆L
L

= 1
2
h, then ∆h

h
=

∆(∆L
L

)

(∆L
L

)
, and hence the expression (17) can be expressed

as:
∆(

√
hL0)√

hL0

=
∆[

√
h(δω)2( ∆L

∆(δω)
)]

[
√

h(δω)2( ∆L
∆(δω)

)]
= ±[

∆L0

L0

+
∆(∆L

L
)

2(∆L
L

)
] (18)

The right hand side of the expression (18) can be calculated from the output
of the detector (∆L)’s at different δt’s or equivalently at different δω’s during

its operational period. Therefore, the calculation of the right hand side of the
expression (18) will give the fluctuations in the quantity

√
h(δω)2( ∆L

∆(δω)
), from

which one can get a trace (finger print) of
√

h, by using one of the widely accepted
data analysis schemes.
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