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Abstract

We investigate the dynamical instability of the one-armed spiral m = 1

mode in differentially rotating stars by means of hydrodynamical simulations in

Newtonian gravitation. We find that both a soft equation of state and a high
degree of differential rotation in the equilibrium star are necessary to excite a

dynamical m=1 mode as the dominant instability at small values of the ratio
of rotational kinetic to potential energy, T/|W |. We find that this spiral mode

propagates outward from its point of origin near the maximum density at the
center to the surface over several central orbital periods. An unstable m = 1

mode triggers a secondary m = 2 bar mode of smaller amplitude, and the bar
mode can excite gravitational waves. As the spiral mode propagates to the surface

it weakens, simultaneously damping the emitted gravitational wave signal. This
behavior is in contrast to waves triggered by a dynamical m = 2 bar instability,

which persist for many rotation periods and decay only after a radiation-reaction
damping timescale.

1. Introduction

Stars in nature are usually rotating and may be subject to nonaxisymmet-
ric rotational instabilities. An exact treatment of these instabilities exists only for

incompressible equilibrium fluids in Newtonian gravity [2, 5]. For these configu-
rations, global rotational instabilities may arise from non-radial toroidal modes

eimϕ (where m = ±1,±2, . . . and ϕ is the azimuthal angle).
For sufficiently rapid rotation, the m = 2 bar mode becomes either secu-

larly or dynamically unstable. The onset of instability can typically be identified
with a critical value of the non-dimensional parameter β ≡ T/|W |, where T is

the rotational kinetic energy and W the gravitational potential energy. Uniformly
rotating, incompressible stars in Newtonian theory are secularly unstable to bar-

mode formation when β ≥ βsec � 0.14. This instability can grow only in the

presence of some dissipative mechanism, like viscosity or gravitational radiation,
and the associated growth timescale is the dissipative timescale, which is usu-

ally much longer than the dynamical timescale of the system. By contrast, a
dynamical instability to bar-mode formation sets in when β ≥ βdyn � 0.27. This
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instability is independent of any dissipative mechanisms, and the growth time is
the hydrodynamic timescale.

Determining the onset of the dynamical bar-mode instability, as well as the
subsequent evolution of an unstable star, requires a fully nonlinear hydrodynamic

simulation. Simulations performed in Newtonian gravity have shown that βdyn

depends only very weakly on the stiffness of the equation of state. Once a bar

has developed, the formation of a two-arm spiral plays an important role in redis-
tributing the angular momentum and forming a core-halo structure. Both βdyn

and βsec are smaller for stars with high degree of differential rotation. Simulations

in relativistic gravitation have shown that βdyn decreases with the compaction of
the star, indicating that relativistic gravitation enhances the bar mode instability.

In order to efficiently use computational resources, most of these simulations have
been performed under certain symmetry assumptions (e.g. π-symmetry), which

do not affect the growth of the m = 2 bar mode, but which suppress any m = 1
modes.

Recently, Centrella et al. [1] reported that such m = 1 “one-armed spiral”
modes are dynamically unstable at surprisingly small values of T/|W |. Centrella

et al. [1] found this instability in evolutions of highly differentially rotating equi-
librium polytropes with polytropic index n = 3.33. Typically, these equilibria

have a “toroidal” structure, so that the maximum density is not located at the
geometric center but rather on a toroid rotating about the center.

The purpose of this paper is to study further the conditions under which
a dynamical m = 1 instability is excited. We vary both the polytropic index,

i.e. the stiffness of the equation of state, and the degree of differential rotation to

isolate their effects on the instability. Since the onset of rotational instabilities is
often characterized by β we keep this value approximately fixed in our sequences.

We find that a soft equation of state and a high degree of differential rotation
are both necessary to dynamically excite the m = 1 mode at the small value of

β = 0.14 chosen in this paper. We find that a toroidal structure is not sufficient
to trigger the m = 1 instability, but our findings suggest that a toroidal structure

may be necessary.
This paper is organized as follows. We discuss our numerical results in

§ 2, and briefly summarize our findings in § 3. Throughout this paper we use
gravitational units ∗ with G = c = 1 and adopt Cartesian coordinates (x, y, z). A

more detailed discussion is presented in Ref. [4].

∗Since we adopt Newtonian gravity in this paper, the speed of light only enters in the
gravitational waveforms.
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2. Numerical Results

We parametrize the stiffness of the equation of state by varying the poly-
tropic index n between n = 3.33 and n = 2. In this sequence we keep the degree

of differential rotation (i.e. Ωc/Ωeq) fixed, and adjust the overall rotation rate
(parametrized by the ratio of the polar to equatorial radius Rp/Req) so that the

value of T/|W | remains very close to 0.144 (as for Model I (a) in Table 2 of Ref.

[4]). We list our four different Models II in Table 3 of Ref. [4].
Figure 9 of Ref. [4], where we plot the dipole diagnostic D as a function of

time, clearly shows that an m = 1 instability is excited in Models II (b) and II (c)
in addition to Model II (d). We find that D starts decreasing immediately after

reaching a maximum. This is a consequence of the star rearranging its density
profile, and of the spiral arm propagating outward to lower density regions. Model

II (a), however, which has the most pronounced toroidal structure, remains stable.
In Fig. 1., we show the maximum density as a function of time. The

maximum density slowly increases in all cases due to dissipation of differential
rotation. Once the one-armed spiral forms in Models II (b) and II (c), however,

this increase is much more rapid, which indicates again that the unstable mode
rearranges the matter in the star and destroys the toroidal structure.

We show the gravitational wave signal emitted from Models II in Fig. 13 of
Ref. [4]. As consistent with the diagnostic D, the gravitational wave signal emit-

ted by the one-armed spiral mode does not persist over many rotational periods,

and instead decays fairly rapidly after it has been excited. This characteristic is
very different from what has been found for m = 2 bar mode instabilities (com-

pare § 3.2 of Ref. [4]). We also find that the maximum wave amplitude is much
smaller than can be found for configurations unstable to a pure bar mode (compare

Fig. 3 of Ref. [4]) as gravitational radiation requires a quadrupole distortion and
the m = 2 perturbation in Models II is only being excited as a lower-amplitude

harmonic of the m = 1 mode.

3. Summary

We have studied the conditions under which Newtonian, differentially ro-

tating stars are dynamically unstable to an m = 1 one-armed spiral instability,
and found that both soft equations of state and a high degree of differential ro-

tation are necessary to trigger the instability. For sufficiently soft equations of
state and sufficiently high degrees of differential rotation we found that stars are

dynamically unstable even at the small values of T/|W | ∼ 0.14 considered in this
paper.

While we find that a toroidal structure alone is not sufficient for the m = 1
instability, all the models that are unstable do have a toroidal structure, suggest-

ing that this may be a necessary condition. The growing m = 1 mode redis-
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Fig. 1. Intermediate (tint ≈ 0.7tfin) and final density contours in the equatorial plane
for Models II (See Ref. [4] in details).

tributes the matter in the unstable star and destroys the toroidal structure after

a few central rotation periods.
Quasi-periodic gravitational waves emitted by stars with m = 1 instabili-

ties have smaller amplitudes than those emitted by stars unstable to the m = 2

bar mode. For m = 1 modes, the gravitational radiation is emitted not by the pri-
mary mode itself, but by the m = 2 secondary harmonic which is simultaneously

excited, albeit at a lower amplitude. Unlike the case for bar-unstable stars, the
gravitational wave signal does not persist of many periods, but instead is damped

fairly rapidly in most of the cases we have examined.
We have plotted typical wave forms for stars unstable to m = 2 bar modes

in Fig. 3 of Ref. [4] and for stars unstable to one-armed spiral m = 1 modes
in Figs. 13 and 18 of Ref. [4]. Characteristic wave frequencies fGW are seen

to be ∼ P−1
c ∼ Ωc, and are considerably higher than Ωeq ∼ (M/R3)1/2 due

to appreciable differential rotation. For supermassive stars (M > 105M�) the

amplitudes and frequencies of these waves fall well within the detectable range of
LISA [3].
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