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Abstract

During the 2002-2003 observing season the Whipple 10m imaging atmo-

spheric Čherenkov telescope was used to search for dark matter annihilation ra-

diation in four nearby galaxies: M32, M33, Draco, and Ursa Minor. Scientific
motivations for this choice of targets are discussed as well as accumulated expo-

sure. The analysis results are to be reported in the conference presentation.

1. Introduction

The lightest supersymmetric particle, the neutralino, with a mass in the
range 50 GeV - 5 TeV, is a plausible candidate for non-baryonic cold dark matter

(CDM) [12, 16], which can be detected indirectly via its annihilation products [3,

32]. The annihilation rate is proportional to the square of the neutralino density
integrated along the line of sight, suggesting strong enhancement in the direction

of dark matter clumps. The increasing dark matter density profile toward the
center of Milky Way (MW) galaxy and its proximity made the Galactic Center

a natural choice for such searches [4, 5, 19]. The CDM annihilation flux from
even nearby extragalactic objects, such as dwarf galaxies located only ten times

father, would have to be suppressed by a factor of hundred. However, due to the
squared neutralino density dependence, the distance penalty can be overcome by

the equal increase of DM density in the cores of MW satellite and local group
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galaxies. Although little is known about the distribution of DM in the central 1
- 10 pc of Galactic Nuclei (GN), which is the most relevant region for generating

an annihilation signal, the current paradigm suggests that it is a strong function
of the merger history of a galaxy [25] and its long-term evolution that could

be affected by the presence and growth of central black holes (BHs), e.g. [13].
Because of this, D. Merritt argues that MW was perhaps unfortunate, and a

DM spike in its center is unlikely [26]. On the other hand, if stellar, and stellar
velocity distributions can be used as a guide to the distribution of dark matter

at the very centers of galaxies, we suggest the following arguments to justify the

choice of several extragalactic sources as plausible candidates for observation of
DM annihilation.

2. M32

M32 is the closest compact elliptical galaxy believed to be formed in a

rare cosmological event from a low luminosity spiral galaxy [2]. Stellar kinematic
data as well as gas-dynamical studies strongly support the presence of a single

supermassive compact object, ∼ 3.6× 106Mo in the center of M32 [15]. The core

of M32 has a relatively homogeneous stellar population that can be modeled as
being coeval and of intermediate age (∼ 4 Gyr) [7, 8]. Lauer et al. estimate M32

core relaxation time scale as ∼ 2−3 Gyr [22]. These data suggest that the nucleus
of M32 was unlikely to have undergone a recent merging event when a massive

black hole binary could have depleted the central stellar density by evacuating
stars and destroying potential dark matter cusps in the galaxy core [27]. The

data also imply that enough time has passed for collisional two-body relaxation
of stellar population around a black hole to form a cusp in the Stellar Density

Profile (SDP), ∼ 1/rα, with α = 3/2−7/4 correspondent to Bahcall-Wolf solution
[1]. Optical and infrared data indicate SDP compatible with α in the range 1.4

to 1.9 and still rising at the resolution limit of 0.07 pc. The exact spectral index
and the possibility of its break at a distance ∼ 1 pc from the GN center is being

debated [7, 22]. The stellar density at the very center of M32’s nucleus likely
exceeds 107Mo per pc3, which is the highest known to us in nearby systems [22].

After initial violent relaxation during large scale structure formation non-

interacting dark matter has no means of self-evolution on subgalactic scales be-
cause it cannot cool down without gravitational coupling to baryonic matter. This

is true at least for spherically symmetrical systems. Thus it is likely that dur-
ing formation of the galactic core the DM Density Profile (DMDP) should follow

SDP with a characteristic relaxation time comparable to stellar relaxation that, in
turn, is decreased by the heat transfer associated with the DM component in the

nucleus. In addition, the slow growth of the central BH should cause adiabatic
compression of DM with the adiabatic invariant rMBH =const [20]. If almost all

BH mass is acquired by slow growth, the amount of compression could be sub-
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stantial, resulting in the appearance of a spike in the DMDP with α > 2.25 [13].
If, however, galactic mergers have been dominantly responsible for BH growth

this may not only destroy potentially created DM spikes, it will also drastically
suppress the amount of adiabatic DM compression around the BH. Probably both

the effect of adiabatic BH growth and the evolution of DMDP driven by baryonic
stellar and gas components in the cores of the galaxies take place at the same time

and cannot be completely disentangled [23]. For the case of M32 both scenarios
of DM evolution seem to favor a cusp in DMDP with α ≥ 1.5.

3. M33

The neutralino annihilation flux from a “cuspy” DMDP (α > 1.5) is for-
mally divergent at small scales. The physically justified minimal radius is set by

the equality between the annihilation rate and the rate of supply of neutralinos
into annihilation region. The latter is related to the BH growth rate and/or relax-

ation rate of baryonic & DM components in GN. The general effect of the central
BH is to increase the stellar velocity dispersion within the radius of its gravi-

tational influence [30], and consequently increase GN relaxation time, limiting

neutralino annihilation flux dynamically. From this point of view a galaxy with
a small BH and very rapid GN evolution scale, such as M33, may be preferable

for observations.
M33 is a normal low-luminosity dark matter dominated bulgeless spiral

galaxy with dark halo ∼ 5.1 × 1011Mo [6]. The mass of the BH in its center
is less than ∼ 1.5 × 103Mo [11, 24], and the stellar population in its nucleus

can be modeled by two bursts of star formation ∼ 2 and ∼ 0.5 Gyr ago [29].
The nucleus of M33 hosts the most luminous steady X-ray source in the Local

Group that is also associated with a radio source and reminiscent of the galactic
microquasar GRS 1915+105 [9]. Small (∼%10) but significant X-ray spectrum

and time variability have also been reported [21]. M33 is remarkable for its very
small galaxy nucleus relaxation time ∼ 3 Myr due to very dense, > 2 × 106Mo

per pc3, stellar core (∼ 1 pc) and extremely low velocity dispersion [22].

4. Draco and Ursa Minor dwarf galaxies

Dark matter rich MW satellite Dwarf Galaxies (DGs) are favored for ob-

servations due to their proximity, very low baryonic content, and/or possibility
of self-interacting DM. Within non-interacting DM scenarios the cores of these

galaxies are “frozen” due to particularly low stellar and gas densities and con-
sequently slow evolution rates. Their typical core relaxation times, ∼ 5 × 102

Gyr, exceed Hubble time. Thus, the DGs could not have evolutionarily built any
sub-parsec cusp or spike-like structure in their DMDP for efficient annihilation of

neutralinos, and it is also difficult to imagine any DM evolutionary scenario on
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Table 1. Accumulated exposure

Source ON (hrs) OFF (hrs) Zenith angle range

M32 10 4.5 10o − 40o

M33 13 4.0 1o − 40o

Draco dwarf 4.5 3.0 27o − 35o

Ursa Minor dwarf 5.5 4.0 35o − 39o

the scale of ∼ 1 pc, a typical separation between stars in the nuclei of DGs. Tyler

argues that these perhaps might be the exact conditions which would preserve
intact any sub-parsec DM structures from destruction by galaxy merger events or

by particularly high abundance of stars in GN [31]. The initial perturbations in
DMDP with the scales smaller than the Jeans instability scale could have formed

during violent relaxation and survived without trapping a substantial amount of

baryons [18, 28]. These invisible and very slowly evolving structures could have
been gravitationally trapped in the MW halo or in the centers of dwarf galax-

ies. If so, the quantitative prediction of the annihilation flux from DM cusps will
strongly depend on the cusp evolution mechanism because it will determine the

maximal annihilation rate. This scenario becomes particularly interesting if DM
is self-interacting indeed [14]. Among many other puzzling observations of dwarf

galaxies there are indications of “clumpy” distribution of matter. For example,
Ursa Minor dwarf has distinct stellar lumps within ∼ 10′ circle [17]. The study

of stellar proper motion suggests that the lump crossing time is ∼ 5 Myr and six
individual lumps shouldn’t exist any longer than this [10]. Is it a coincidence to

observe six of them at the same time?

5. Data

Table 1 shows the range of zenith angles at which all proposed targets were

observed and the total exposure so far accumulated by the VERITAS collabora-
tion for each source.
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