- 2297

Gamma-Ray Energy Spectra through Decays of Neutral Pions Produced in Proton-Proton Interactions

Ching-Yuan Huang Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

Abstract

The accuracy of different parameterisations of neutral pion production in proton-proton collisions is investigated based on analyses of accelerator measurements of differential and integrated total cross sections. The energy spectra of gamma-rays from the decay of secondary particles produced by interactions of cosmic-ray protons with ambient gas is calculated over wide energy range for different primary spectra of protons. It is found that a proton flux with a spectral index $\alpha = 2.4 \sim 2.6$ is appropriate to reproduce the GeV bump in the diffuse γ -ray flux.

1. Introduction

The γ -rays are a good probe for the information about the production sites and also the propagation of accelerated charged particles in the Galactic plane. The diffuse γ -ray emission of the galactic plane provides the information about Galactic cosmic rays (CRs), the interstellar medium, and also the interactions between them (see references in [1-3]).

Three regimes of diffuse Galactic γ -rays are distinguished [4-7]. However, the relative contributions of the other two processes (the bremsstrahlung and the inverse Compton (IC) scattering) with respect to the decays of neutral pions, produced in collisions of CR protons/nuclei with the ambient gas, is uncertain [6]. With the reasonable assumption on uniform and continuous distribution of CR sources in the Galaxy [2], the γ -ray spectrum can be more reliably determined from π^0 decay between GeV and sub-TeV range, because, unlike the other two processes involving with electrons in CRs, the γ -rays from π^0 decays carry the information about the hadronic component in cosmic rays.

2. Neutral Pion Meson Production Cross Section

To calculate the γ -ray spectrum, one requires the knowledge of π^0 production in nuclear collisions. In this work, a new parametrisation of inclusive cross section of π^0 production in pp collisions is applied [8]. This parametrisation has

pp. 2297–2300 ©2003 by Universal Academy Press, Inc.

2298 —

well reproduced the invariant differential cross section at energies from $P_p = 50$ GeV/c to the CM energy $\sqrt{s} = 63$ GeV over a wide scattering angle range [8-10]. As to investigate the accuracy of the π^0 production parametrisations from different models and other works [5-6, 11-14], both invariant differential and total cross section are calculated. The present work has shown an overall good agreement with data, from threshold to a few TeV. Although at $E_p > 100$ GeV, the calculations have underestimated the values by a factor of 20-30%, such deviation is still within the experimental uncertainties and the generating CR protons with energies up to this value is found to contribute about 98% of the π^0 population.

3. Gamma-Ray Spectrum from Neutral Pion Decays

The spectrum of $\gamma\text{-rays}$ produced from CR-generated π^0 decays $pp\to\pi^0\to 2\gamma$ is calculated as

$$q_{\gamma}(E_{\gamma}) = 2 \int_{E_{\pi}^{min}(E_{\gamma})}^{\infty} dE_{\pi} \frac{q_{\pi}(E_{\pi})}{\sqrt{E_{\pi}^2 - m_{\pi}^2}}$$
(1)

where $q_{\pi}(E_{\pi})$ is the π^0 spectrum produced in CR-generating collisions:

$$q_{\pi}(E_{\pi}) = 4\pi n_H \eta \int_{E_p^{min}(E_{\pi})}^{\infty} dE_p J_p(E_p) \frac{d\sigma_{\pi}(E_{\pi}, E_p)}{dE_{\pi}}$$
(2)

with energies in GeV, $E_p^{min}(E_{\pi})$ the minimum energy determined by kinematics, $J_p(E_p)$ the CR proton flux, n_H the number density of the ambient gas, being taken as $n_H = 1$ H/cm³, η the factor by considering the π^0 production from channels involving heavier nuclei in CRs and the ambient gas, being assumed 1.6, $d\sigma_{\pi}(E_{\pi}, E_p)/dE_{\pi}$ the differential cross section for a CR proton of energy E_p to produce a π^0 with an energy E_{π} , and $E_{\pi}^{min}(E_{\gamma})$ the minimum energy for a π^0 decaying to create photons with energy E_{γ} , being derived by kinematics as $E_{\pi}^{min}(E_{\gamma}) = E_{\gamma} + m_{\pi}^2/4E_{\gamma}$.

The generating CR spectrum is assumed as a simple power-law. Different modulated CR spectra show no strong influence on the shape nor the peak of the π^0 spectrum. At energy above a few GeV, the π^0 spectrum tends to attain a powerlaw asymptotically. Fig. 1. shows the γ -ray emissivities from π^0 decays calculated in different works, corresponding to the median proton flux [7]. The current work shows no great deviation from the previous work [6], although these two works have reproduced different π^0 multiplicities below a few GeV. The same calculation but for the local CR proton flux $J_p(E_p) = 2.2 E_p^{-2.75} \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{GeV}^{-1}$ [15] is also shown in the figure, from which, one can conclude that the more accurate π^0 cross section below 2 GeV doesn't evidently change the γ -ray flux even low energy neutral pions could produce a broad γ -ray energy distribution. By investigating the π^0 and γ populations due to proton energy contribution, the overall γ flux is

contributed by protons with energies above few GeV. Fig. 1. also shows different γ -ray flux generated by CR proton spectra of a simple power-law $\propto E_p^{-\alpha}$, with $\alpha = 2.0, 2.1$ and 2.5 for comparison. The CR proton energy spectra have been normalised to the same CR energy density $\rho_E \approx 1 \text{ eV/cm}^3$. The γ -ray spectrum from π^0 decays is seen to attain a power-law above few GeV.

The γ -ray flux from π^0 decays is also calculated in comparison with the observed bump of diffuse γ -ray radiation at GeV range:

$$J_{\gamma}(E_{\gamma}) = \int \frac{q_{\gamma}(\boldsymbol{r}, E_{\gamma})}{4\pi} dl_d \approx \frac{\overline{q_{\gamma}}(E_{\gamma})}{4\pi} l_d \tag{3}$$

where l_d is the characteristic line-of-sight depth of the emission region and is taken as the typical Galactic radius, $l_d \simeq 15$ kpc. Fig. 2. shows the γ -ray flux from π^0 decays generated by simple power-law proton energy spectra with indices $\alpha = 2.4$, 2.5 and 2.6, and with CR-gas coefficient $\rho_E N_H = \rho_E n_H l_d \simeq$ 3.4×10^{-22} eV/cm⁵, for which, N_H stands for the gas column density. It is seen that a proton energy spectrum softer than $\alpha = 2.6$ fails to explain the observed diffuse γ -ray flux from the inner Galaxy at energies above 1 GeV, nor one harder than $\alpha = 2.4$. Based on the current calculation, a proton energy spectrum with a power-law spectral index $\alpha = 2.4 \sim 2.6$ could explain the spectral shape of the observed GeV bump in the diffuse γ -ray radiation.

4. Conclusions

A parametrised π^0 production cross section in pp collisions is verified with detail analysis. The observed γ -ray flux above sub-GeV is well reproduced. The proton flux with a spectral index $\alpha = 2.4 \sim 2.6$ is found appropriate for the explanation of the observed GeV bump in the diffuse γ -ray radiation.

Fig. 2. The γ -ray flux from π^0 decays calculated for CR proton energy spectrum corresponding to a simple power-law distribution with indices $\alpha = 2.4, 2.5$ and 2.6, compared with the EGRET data [16].

Acknowledgements. The author would like to gratefully acknowledge F. A. Aharonian for his important comments and D. Horns for the useful discussions.

References

- [1] Nishmura, J. et. al. 1980, ApJ 238, 394
- [2] Aharonian, F. A., Atoyan, A. M., Völk, H. J. 1995, A&A 294, L41
- [3] Erlykin, A. D., Lipski, M., Wolfendale, A. W. 1998, Astropart. Phys. 8, 283
- [4] Aharonian, F. A., Atoyan, A. M. 2000, A&A 362, 937
- [5] Dermer, C. D. 1986, ApJ 307, 47
- [6] Stephens, S. A., Badhwar, G. D. 1981, Astrophys. Space. Sci. 76, 213
- [7] Mori, M. 1997, ApJ 478, 225
- [8] Blattnig, S. R. et al, 2000, Phys. Rev. D 62, 094030
- [9] Jaeger, K. et al. 1975, Phys. Rev. D 11, 1756
- [10] Büsser, F. W. et al. 1976. Nucl. Phys. B106, 1
- [11] Lipkin, H. J., Peshkin, M. 1972, Phys. Rev. Lett. 28, 862
- [12] Stecker, F. W. 1970, Astrophys. Space Sci. 6, 377
- [13] Dermer, C. D. 1986, A&A 157, 223
- [14] Gaisser, T. K., Shaefer, R. K. 1992, ApJ 394, 174
- [15] Simspon, J. A. 1983, Ann. Rev. Nucl. part. Phys. 33, 323
- [16] Hunter, S. D. et. al. 1997, ApJ 481, 205