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Abstract

X-ray transition radiation (TR) can be used to measure the Lorentz factors

of relativistic particles. Typical transition radiation detectors (TRDs) use radi-

ators with either regularly spaced foils or fibers or foam with irregular spacings.
The TRD proposed for the ACCESS cosmic ray experiment employs radiators

with a quasi-periodic structure, i.e., aluminum honeycomb. We have investigated
the impact of quasi-periodic radiators on the expected TR yield, and present

calculations comparing the TR yield of the quasi-periodic radiators to regularly
spaced radiators.

1. Introduction

X-ray transition radiation produced by relativistic particles traversing pe-
riodic foil radiators has been studied in detail both theoretically [1-3] and ex-

perimentally [3-5]. In practice, irregular radiators (e.g., foams and fibers) have
often been used with great success [6-9]. These can have the advantages of me-

chanical simplicity, ease of construction, and isotropic angular dependence. The
total radiation intensity from such irregular radiators has been shown experimen-

tally to be approximately the same as that from a periodic foil radiator with
the same average foil thickness l1 and spacing l2 [10]. Recently, “quasi-periodic”

radiators have been proposed with alternating short (l2 − δ) and long (l2 + δ)
spacings, for example honeycomb and straw tube structures [11]. In the case of

the proposed ACCESS cosmic ray experiment [11,12], an aluminum honeycomb
radiator has been designed which possesses convenient mechanical properties and

makes it possible to extend the range of energy measurements up to the range
of Lorentz factors γ ∼ 105. We investigate here the impact of such a regularly

varying radiator spacing.

2. Theoretical Discussion

Previous studies have computed the radiation intensity from radiators with

varying structures, for example for cases where the dielectric constant varies sinu-
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Fig. 1. Schematic of a charged particle traversing a radiator with alternating foil
spacings.

soidally or randomly [3]. Here we consider the case where the foil thickness l1 is

constant and the spacing alternates between l2−δ and l2 + δ. In Fig. 1, a charged
particle with constant velocity βc and Lorentz factor γ � 1 moves through a

radiator consisting of N foils. Radiation is emitted at the 2N interfaces labelled
from n = 0 to 2N − 1. The differential intensity emitted per unit solid angle θ

and frequency ω can be computed from the square of the sum of the complex

amplitudes at each of the 2N interfaces [13]:

d2SN

dθdω
= |Ψ(θ)|2

2N−1∑
j,k=0

ei(φj−φ∗
k) , (1)

where Ψ(θ) is the radiation amplitude from a single interface and φj is the phase
factor corresponding to interface j. Since the radiator period is 2l1 + 2l2, we

express the phase factors in terms of ∆ = 4l1/Z1 + 4l2/Z2, where Zi are the
standard formation zones

Zi =
4βc

ω

(
1

γ2
+ θ2 +

ω2
i

ω2

)−1

(2)

in the foils (i = 1) and the gas/vacuum gaps (i = 2). Here ωi is the plasma
frequency in medium i, related to the dielectric constant at x-ray energies by

εi = 1 − ω2
i /ω

2. The phase factors appropriate to each interface can then be
written in the form

φ4j = j∆ φ4j+1 = j∆ + 2l1
Z1

φ4j+2 = j∆ + 2l1
Z1

+ 2(l2−δ)
Z2

φ4j+3 = j∆ + 4l1
Z1

+ 2(l2−δ)
Z2

(3)

where j ranges from 0 to N/2 − 1. The sum in Eq. (1) can then be expressed as

S =

2N−1∑
j,k=0

ei(φj−φ∗
k) = SoAA∗ (4)

where

So =

N/2−1∑
j=0

eiφ4j

N/2−1∑
k=0

e−iφ∗
4k and A =

[
1 + e

2i(
l1
Z1

+
l2−δ
Z2

)
] [

1 + e
2il1
Z1

]
. (5)
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In the case where absorption and scattering are not important (i.e., where Zi is
real), then

AA∗ = 4

[
1 + cos

(
2l1
Z1

)][
1 + cos

(
2l1
Z1

+
2(l2 − δ)

Z2

)]
(6)

and one can define the ratio of the TR yield in the quasi-periodic radiator to the

yield from the regularly spaced radiator,

R =
AA∗(δ)

AA∗(δ = 0)
=

1 + cos (2l1
Z1

+ 2l2
Z2

− 2δ
Z2

)

1 + cos (2l1
Z1

+ 2l2
Z2

)
. (7)

Fig. 2 shows an example of the aluminum honeycomb radiator structure
recently proposed for the ACCESS mission [11]. Particles passing vertically down-

ward through the radiator encounter one of two radiator structures: Particles with

type 1 trajectories encounter a regular structure with l1 = 150 µm and l2 = 5.2
mm; and particles with type 2 trajectories encounter a quasi-periodic radiator

structure with foil thickness l1 = 75 µm/ sin 41◦ = 120 µm and spacing alternat-
ing between l2 = 2.6 mm−δ and 2.6 mm+δ, where δ is constant for each (vertical)

trajectory but varies over the range 0 < δ < 2.6 mm depending on the lateral
position of the trajectory.

The effect of the quasi-periodic structure can be determined by evaluating
the average R:

R =
1

2δmax

∫ δmax

−δmax

R dδ =
1 + Z2

2δmax
cos (2l1

Z1
+ 2l2

Z2
) sin 2δmax

Z2

1 + cos (2l1
Z1

+ 2l2
Z2

)
. (8)

3. Conclusion

For δmax � Z2, R ≈ 1. This is the case for high Lorentz factors, high

x-ray energies and small angles (see Eq. 2). However, as δmax approaches Z2/2, R

Fig. 2. Aluminum honeycomb structure
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begins to oscillate on either side of unity. The effect of a finite δmax is to enable
resonances (depending on the radiator geometry and the values of Z1 and Z2)

where R � 1, indicating an enhancement in the TR signal relative to the regular
spaced foils. Detectors sensitive to the x-ray energies where these enhancements

occur (in particular where cos(2l1/Z1+2l2/Z2) ≈ −1) can then be used to increase
the TRD performance over regularly spaced foil TRDs.
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