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Abstract

We are developing a new, fast numerical scheme for the CR diffusion con-

vection equation to be applied to the study of the nonlinear time evolution of
CR modified shocks for arbitrary spatial diffusion properties. The scheme uses

a coarse-grained finite volume method in momentum space that is an extension
of methods introduced by us previously. This approach has enabled us to carry

out simulations using only 6-10 momentum bins spanning several orders of magni-
tude in momentum that agree well in comparisons with results from simulations of

modified shocks carried out with our conventional finite difference scheme based
on more than an order of magnitude more momentum points. The coarse-grained

solutions are faster by a factor that scales approximately with the reduction in
the number of momentum bins.

1. Introduction

To reduce the effort required to solve the diffusion convection equation
(DCE) during diffusive shock acceleration (DSA), we take advantage of the ex-

pected smooth structure of the particle distribution function, f(p). We use a
finite volume approach in momentum space along with a simple model for the

distribution inside individual volumes of momentum space. The method extends
that in [1] and [2] and is similar to the scheme introduced by [3], but computa-

tionally simpler. Those authors actually ignored spatial diffusion, so could not

explicitly treat DSA. They applied analytic test-particle DCE solutions for f(p)
at shock jumps.

2. The Method

Ignoring momentum diffusion for now we can write in 1D
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where S is a convenient source term, and all the other symbols take their usual
meanings.

The number of CRs in the momentum bin ∆pi = [pi, pi+1] is

ni =
∫ pi+1

pi

p2f(p)dp. (2)

Integrating over the finite momentum volume bounded by ∆pi gives
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and
Sni

=
∫ pi+1

pi

p2S(p)dp. (5)

The first pair of terms on the RHS of equation (3) represents the net flux of CRs
across the boundaries of the individual momentum bins due to adiabatic flow

compression or expansion. Extension of this term to include fluxes due to other
energy loss or gain processes, such as momentum diffusion or radiative losses is

obvious.
In addition we define

gi =
∫ pi+1

pi

p3f(p)dp. (6)

For relativistic particles gi is proportional to the CR energy in the bin.

This moment of the DCE is
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Since the local slope, ∂ ln f
∂ ln p

= −q(p), is a slowly varying function over much
of momentum space, the simplest natural subgrid model for f(p) assumes q is

constant inside ∆pi; that is, we can apply a piecewise powerlaw model for f(p)
and use a logarithmic spacing in the momentum grid. Then, for example,
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with obvious extension to gi and the other terms in the DCE moment equations,
where fi = f(pi) = (pi+1/pi)

qifi+1, and di = pi+1/pi. Using the ratio gi/pini one

can derive the intrabin index, qi once ni and gi are known.
To update the distribution function we integrate equations (3) and (7) over

the timestep ∆tk and operator split into three parts. Spatial advection is carried
out by an explicit van Leer scheme and spatial diffusion by a semi-implicit Crank

Nicholson scheme. Momentum advection, involving terms like Fni
is carried out

with an explicit scheme illustrated for ni by

nk+1
i = nk

i + ∆tk ∗ (Fni
− Fni

), (10)

where the overbar indicates a flux averaged over the domain of dependence in
momentum over the timestep.

3. Discussion

Fig 1. shows results from an initial test of the scheme inside a TVD hydro-
dynamics code and, for comparison, the equivalent simulation with a conventional

finite difference scheme for solving the DCE [4]. The simulations involve evolution
of an initial Mach 10 shock discontinuity with an initially uniform CR pressure

equal to twice the upstream gas pressure with f(p) ∝ p−5. The diffusion coef-
ficient was κ(p) = p0.5. In diffusion time units, td = κ(p = 1)/u2

s, the shock

structure and immediate-postshock particle distribution function are shown at t
= 0, 2.5, 5, 7.5, 10. The conventional DCE solution used 96 momentum points

spanning the momentum range ln(p) = [-1, 8]. The coarse-grained solution used
9 logarithmically expanding momentum bins. It gave a factor 5 reduction in com-

putation time. The code has been tested with simple CR injection models and

we are presently implementing our thermal injection scheme [4] and porting the
routine to our CR AMR code, CRASH.
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Fig. 1. Evolution of a CR modified Mach 10 plane shock using two different schemes
for solving the diffusion convection equation. The solid lines (dynamical variables)
and the large stars (distribution function) represent solutions based on 8 momentum
bins and the new scheme described in the text. The dotted lines and small triangles
come from a conventional finite difference scheme using 96 momentum points. The
new code took about 80% less execution time.


