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Abstract

We investigated the diffusive reacceleration of cosmic rays in the interstel-
lar space presented by Seo&Ptuskin(1994) and Heinbach&Simon(1995) in which

different formulations are used. It becomes clear that the difference between their
reacceleration coefficients is a factor of 11/6 (= (2−α/2) with a Kolmogorov spec-

trum) for 1GeV cosmic rays. There is, however, little difference in the total energy

gain of cosmic rays passing through the Galaxy. Using the same parameters as
in the nuclei propagation, we calculated the reacceleration model for electrons.

1. Introduction

Second-order Fermi acceleration of cosmic rays in the interstellar medium
is called diffusive reacceleration and generally described as diffusion in the mo-

mentum space[7](Ptuskin). And there is another kind of formulation given by
Simon et al.[1](Simon) that defines the reacceleration parameter directly in the

Fokker-Planck equation. We give the analytical solutions for two different formu-
lations using Green’s function and calculate the mean energy gain rate per g/cm2

in order to apply it to the cosmic-ray electron propagation.

2. Solutions for Second-order Fermi Acceleration

The second-order Fermi acceleration process is represented by the diffusion

in momentum space and the distribution f(x, p) after xg/cm2 satisfies

∂f(x, p)

∂x
− 1

2

1

βp2

∂

∂p
(p4 1

β
σXe

∂f(x, p)

∂p
) = 0 ,

where the escape length Xe = X0R
−α = µβcH/(2D) (rigidity R). The parameter

σ(g/cm2)−2 = C(α)ha/H(va/µc)2 with the halo size H , reacceleration space ha,

Alfven speed va, the surface density of galactic disk µ and C(α) = 32/3α(4 −
α2)(4 − α) � 2.2 [7][2]. The reacceleration parameter ηp is defined by

σXe ≡ ηpR
−α = C(α)

ha

2µ

v

D
(
va

c
)2 ,
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with the spatial diffusion coefficient D = D0βRα (β = v/c). When β ∼ 1, we get
the Green’s function with ν = −1 + 3/α, η′ = ηpz

α/2 (charge z) and P = pc,

G(P, P ′, u) =
2

η′α
(PP ′)−αν/2Iν(2

√
u

η′α2
P α

<)Kν(2

√
u

η′α2
P α

>) (1)

where u is the Laplace transform variable, Iν and Kν are the modified Bessel
function of the first kind and second kind respectively (e.g. R.Schlickeiser 2000).

U< means the smaller of energy U and U ′, and U> is the larger. The solution

N(E, x) = p2f(p, x) with the initial function N(P, 0) is

Nν(E, x) =
P αν/2+α−1

xη′α

∫ ∞

0
N(P ′, 0)P ′−αν/2 exp(−P α + P ′α

xη′α2
)Iν(

2(PP ′)α/2

xη′α2
)dE ′ .

(2)
Starting with mono energy N(P, 0) = δ(P − P0), eq. (2) reduces to

Nν(E, x) [GeV−1] =
P αν/2+α−1P

−αν/2
0

xη′α
exp(−P α + P α

0

xη′α2
)Iν(

2

xη′α2
(PP0)

α/2) . (3)

In the case of Simon[1], the coefficient of the Fokker-Planck equation is
directly associated with the reacceleration parameter η(g/cm2)−1.

∂N(E, x)

∂x
+

∂

∂E
[η · E R−αN(E, x)] − 1

2

∂2

∂E2
[η · E2 β2 R−αN(E, x)] = 0 .

The Green’s function and the solution of this equation are given by eq. (1) and

eq. (2) with ν = 1/α and P → E(total energy). The solution of mono energy
N(E, 0) = δ(E − E0) is given by N1/α(E, x) in eq. (3) and exactly generates the

curves shown in Simon et al.(Fig.3 in [8]). Next we calculate the energy gain
rate using eq. (3). Cosmic rays with the initial energy E0 have the mean energy

Eav(E0, x) = E0y
−1/α (Γ(A)/Γ(B))(F (A, B; y)/ey) after xg/cm2, where Γ is the

gamma function and F (A, B; y) is the confluent hypergeometric function with

(A, B, y) = (
4

α
,

3

α
,

2P α
0

xηpα2
)(Ptuskin), (A, B, y) = ( 1+

2

α
, 1+

1

α
,

2Eα
0

xηα2
)(Simon) .

Actually in the case of η = ηp = 0.06, 1GeV/n Carbon increases the energy of
63% (Ptuskin) and 32% (Simon) after x =5g/cm2. The energy gain rate is

gE ≡ 1

E0

dEav(E0, x)

dx
=

1

α x
y−1/α Γ(A)

Γ(B)

F (A − 1, B; y)

ey
.

F (A−1, B; y) can be asymptotically expanded since y is always a large value. The
first term becomes gE ∼ (2−α/2)ηpP

−α
0 in the case of Ptuskin, that is sufficiently

accurate. In the case of Simon, of course, the first term is gE ∼ ηE−α
0 . There is a
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Fig. 1. Eq.(2) with the initial single power-law spectrum, (a) the same reacceleration
parameters η = ηp, (b) the same energy gain rates gE(1GeV) = η = ηp(2 − α/2).

factor of (2−α/2) = 11/6 difference between the two parameters if α = 1/3. The

results of the power-law spectrum are shown in Fig.1, where Nν(E, x) is given by
eq. (2) with the source spectrum N(E, 0) = E−γε(E − Emin) with the minimum

energy Emin = 10−3GeV, (ε(x) : the Heaviside function). Fig.1 shows that the

spectrum for Ptuskin raises more than that for Simon if ηp = η (Fig1.a), while
the two spectra are almost identical for the same energy gain gE (Fig1.b).

3. Propagation Calculations

First we investigated the parameters that are estimated from the observed

B/C and sub-Fe/Fe ratios and primary nuclei spectra in each case. The total
energy gain, that is, gE(g/cm2)−1 multiplied by the escape length X0(g/cm2) at

1GeV/n, is gE ·X0 = (2−α/2)·ηp ·X0 = 1.83·0.022·9.4 = 0.38 in Ptuskin(2001)[6]

and gE · X0 = η · X0 = 0.064 · 6.4 = 0.41 in Simon[4]. Each estimate gives the
almost same result of 40% energy gain at the 1GeV/n cosmic ray in the interstellar

space. Next we investigate the effects of reacceleration on cosmic-ray electrons
using the parameters estimated from nuclei data (the parameters in Ptuskin is

employed in Fig.2). The energy loss processes of cosmic-ray electrons shown in
Fig.2(a) are Ionization 1.9×10−16nH(1+0.146 ln(E/m) [GeV/sec] with nH = 0.3,

Bremsstrahlung 1.02× 10−15nHE [GeV/sec], Escape E/(2× 107E−1/3) [GeV/yr]
and Synchrotron + Inverse Compton 2.0×10−16E2 [GeV/sec]. The reacceleration

rate shown in Fig.2(a) is nearly proportional to E1−α and dominates the range
of 10−(2∼1) GeV. Fig.2(b) shows the curves of leaky box model(LBM) including

all processes in Fig.2(a) with the electron measurements. As observed intensities
below 10GeV are influenced by the solar modulation, we fit the model to the
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Fig. 2. (a) Energy change processes for cosmic ray electrons in the interstellar space
(b) LBM with reacceleration having single power-law source spectra(thin lines) com-
pared with electron measurements. The bending thick line is fitted to the radio data.

spectrum estimated from the radio data[3]. The result shows that the source

spectrum has a break around 10GeV with the change of spectral index from –2.1
to –2.4, that has been shown in Moskalenko et al.(1998)[5].

4. Conclusions

We have shown the difference in reacceleration parameter between the two
formulations [1][7]. Those formulations, however, give almost the same energy

gain in the nuclei propagation. If the same parameters as estimated from nuclei
data are applied to the electron propagation, the effects of reacceleration appears

below 1GeV and needs the break in the source spectrum as indicated previously.
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