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Abstract

Based on the boundaryless Galaxy model, we present secondary to primary
ratio in the high energy region, >∼5GeV/n, where the low energy effect such as

reacceleration and the ionization energy loss is negligible. We focus on two data,
B/C and sub-Fe(21-23)/iron, and find reasonable parameters reproducing nicely

both data.
We discuss also the anisotropy problem in connection with the parameters

we estimate here, gas density n, the diffusion coefficient D and so on.

1. Introduction

In paper I[1], we present a new approach to the cosmic ray propagation,

assuming a rather realistic structure of our Galaxy, and find it reproduces well
the primary components, proton ∼ iron. It is, however, not enough to estimate

uniquely many parameters appearing in our model with use of the primary com-
ponent alone.

In the present paper, we show the solution of the cosmic ray density for

the stable secondary components, and compare it with the data on the ratio of
secondary to primary nowadays available. Unstable secondary components such

as 10Be is presented separately in this proceeding[2].

2. Abundance Ratio of the Secondary to Primary Component

The number density of the secondary component originated from the pri-
mary component Np(r) are straightforwardly given by

Np→s(r) =
∫ ∫

dr0[Np(r0)n(r0)vσp→s]Φs(r; r0), (1)

where we omit the rigidity term R for the sake of simplicity. Here, σp→s denotes
the fragmentation cross section, p (primary) → s (secondary). In the present work

we omit the contribution from the second step product (second generation frag-
ments), p → s′ → s, since σp→s′→s is usually much smaller than σp→s.
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The Green function Φs is completely the same as Φp after replacing the
cross section σp by σs, the cross section of the secondary component with the

interstellar gas. Both functions, Np and Φp, are already presented in Paper I, and
so we give only the result, detail of which will be reported elsewhere,

Np→s(r; R)

Np(r; R)
= 4ν2R−α σp→s

σr

Iν,ν(Ur,R; Ûr,R)

Ûr,RIν−1(Ûr,R)
, (2)

where all variables, α, ν, and σr are the same as those appearing in Paper I.
Np(r; R) and Ur,R are defined by Eqs. (7) and (8) in Paper I, and

Ûr,R = 2νR−α/2
√

σs/σr = Ur,R

√
σs/σp, (3)

Iν,η(a; â) �
∫ 1

0
t[1 + ν(1 − t) + . . . ]Iη(ât)dt, (4)

where the contribution of a appears in the third term in the expansion, which is
of the magnitude of less than 10%.

In the limit of R → ∞ in Eq. (2), we obtain a simple form as expected,

Np→s(r; R)

Np(r; R)
= ω̄2R−ασp→s

σr

, (5)

where ω̄ is defined by Eq. (12) in Paper I, related to three scale heights, zD, zn

and zQ.

While the present paper is focussed on the high energy region only, >∼ 5
GeV/n, let us show the secondary to primary ratio in the lower energy limit

taking the reacceleration process into account, in order to see the difference from

the above result for R → ∞. The derivation is a little bit cubersome, but the
final result becomes a quite simple and reasonable,

Np→s(r; R)

Np(r; R)
≈ 4

3

σp→s

ζ0

Rα

β̄ + 2
, with β̄ = γ − α, (6)

where γ is the exponent of the rigidity spectrum of the primary component at

the source, and ζ0 is the reacceleration efficiency with 100-500mb, the detail of
which will be reported elsewhere near future. The most important point we would

like to stress here is the rigidity dependence, Rα (∝ Eα/2), in the lower energy
limit, which should be compared with R−α (∝ E−α) in the high energy limit,

namely we can expect a convex shape in the secondary to primary ratio without
introducing an artificial break in the path length somewhere around a few GV,

currently assumed in the standard leaky box model.

While this fact has been suggested by many authors[3, 4], our consideration
shows more quantitatively in connection with the reacceleration efficiency, ζ0, and

the exponent of the source, γ, as well as the exponent of the rigidity dependence
in the diffusion coefficient, α. More detail consideration including the ionization

loss effect will be reported elsewhere.
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3. Comparison with the Experimental Data

As presented in Paper I, we find two possible choices in (γ, α) = (2.4 ∼
2.5, 1/3), and (2.2 ∼ 2.3, 1/2), reproducing the experimental data on the primary

spectrum, as long as β (= γ+α) is fixed to 2.7-2.8. On the other hand, in the
case of the ratio of the secondary to primary, γ is cancelled out each other (for

high energy region) as seen from Eq. (2). So, in this section we compare the data

of the secondary to primary ratio with our model for two choices, a) α=1/3 and
b) α=1/2. The cross section data is based on those compiled by Webber et al.[5].

In Figs. 1a), b), and 2a), b), we show B/C-ratio and sub-Fe/iron-ratio[3, 4,
6], respectively, where two curver-fittings correspond to a): α=1/3 with σr=2σ0,

and b): α=1/2 with σr=σ0(=34.94mb; see Paper I), for each fugure 1 and 2. Both
choices reproduce the experimental data well within the fluctuation. We assume

zQ/zn=0.5, rn=rQ=15Kpc, though preliminary, which are not so effective in the
abundance ratio.

4. Discussion on the Anisotropy problem

In Figs. 1 and 2, we find two choices, a) α=1/3 and b) α=1/2, are both

consistent with the experimental data, since the data nowadays available are too
poor in the higher energy region, >∼100GeV to decide which choice is better. It

is well known, however, that the choice of α=1/2 predicts too high amplitude of

the anisotropy in comparison with those observed at TeV region, with as large
as 0.1%[4], which is a severe constraint for the diffusion coefficient. So, we touch

briefly upon the anisotropy based on our model, which is obtained by the gradient
of the cosmic-ray density, Np(r).

Two components of the anisotropy amplitude in TeV region, δr along the
Galactic plane and δz transverse to the disc, are easily given by

δr ≈ Rα 3D0

crQ

, δz ≈ Rα 3D0

czQ

z�
zD

, with z� ≈ 10pc, (7)

where we used two approximations, rQ�rD, zQ�zD, based on the analysis of the

longitudinal and the latitudinal spreads of the diffused γ-ray[7].

Putting D0=1028cm2/sec at R=1GV, rQ=15Kpc, zQ=0.15Kpc, zD=1.2Kpc,
we find δr=6.8×10−3, δz=2.8×10−3 for α=1/2 at 100TV, and δr=10−3, δz=4.2×
10−4 for α=1/3 at 100TV. So the set, (γ, α)=(2.4∼2.5, 1/3), is much prefereable
to another set, (2.2∼2.3, 1/2), from the constraint of the anisotropy amplitude.

This point has been pointed out also by several authors[8].
Recently AGASA group reported a significant anisotropy of ∼4% at 1018eV

[9], and it is interesting to note that Eq. (7) gives 3-4% at 1018eV for α=1/3 with
use of the parameters expected from the present analysis. We had better, however,

wait more reliable data on 2ry/1-ry ratio in TeV region to get a firm conclusion.
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Fig. 1. Boron-carbon ratio with two curve-fittings, a) α = 1/3 and b) α = 1/2.
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Fig. 2. subFe-iron ratio with two curve-fittings, a) α = 1/3 and b) α = 1/2.
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