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Abstract

We assume that our Galaxy is boundaryless, and both the diffusion coef-
ficient and the gas density depend on the spatial coordinate r(r, z) in the form

of the exponential type, and we take the rigidity dependence of the diffusion
coefficient into account, having a form D0(R) ∝ vRα. We assume further that

the source spectrum has a power-like form in rigidity, ∝ R−γ , and the spatial
distribution is also of the exponential type.

We present an analytical solution, and compare it with recent data ob-
tained by BESS, RUNJOB and others.

1. Introduction

It is quite important to build the unified picture for all observables in

cosmic ray components, and many people have studied the cosmic-ray propaga-
tion from various point of view[1]. In the present paper, we show an analytical

approach to these problems in three dimensional way, taking the realistic struc-
ture of the Galaxy into account as presented in the next section, and apply it to

the primary components, such as proton ∼ iron, recently obtained by BESS[2],
RUNJOB[3] and others[4]. Secondary components (LiBeB and sub-iron), radioac-

tive one (10Be, 26Al, . . .) and the diffused γ-rays are presented separately in this

proceeding[5, 6, 7].

2. Basic Assumption

We assume that the diffusion coefficient, the gas density, and the source

density of CR, depend on the coordinate r(r, z) with cylindrical symmetry

D(r) = D0 exp[+(r/rD + |z|/zD)], (1a)

n(r) = n0 exp[−(r/rn + |z|/zn)], (1b)

Q(r) = Q0 exp[−(r/rQ + |z|/zQ)], (1c)

where D0, n0 and Q0 correspond to diffusion coefficient, gas density and the source

density of CR at the Galactic center (0, 0), respectively.

pp. 1941–1944 c©2003 by Universal Academy Press, Inc.



1942

We further assume that D0 and Q0 have following rigidity dependence,

D0(R) ⇒ D0vRα, Q0(R) ⇒ Q0R
−γ. (2)

In the present paper, however, we focus on the diffusion problem in the high energy

region only (v ≈ c), >∼5GeV, where the energy change is negligible, namely the
rigidity R at the observation point r equals that at the source. So the diffusion

coefficient D(R; r) is often written simply as D(r), omitting the rigidity R. The
diffusion process with the energy change will be reported elsewhere near future.

Another important assumtion relates to the configuration of our Galaxy.
While past works have set the boudary in both longitudinal and the latitudinal

spreads with, for instance, 15 ∼ 20kpc and 2 ∼ 3kpc respectively, we don’t set
them here, but introduce the scale-height parameters as appearing in equations

(1a)-(1c).
In the prsent work, the ratio of zD to zn and the average of these two scale

heights play essential role, and so we define following parameters,

ν =
1

ν̄
= 1

/(
1 +

zD

zn

)
,

1

z̄
=

1

2

(
1

zn
+

1

zD

)
=

1

2νzD

. (3)

3. Solution of the Diffusion Equation

Assuming a position of the primary cosmic-ray source is given by r0(r0, z0)

in the cylindrical coordinate, the diffusion equation has a form

[∇ · D(r)∇− n(r)vσp]Φp(r; r0) = −δ(r − r0)/2πr0, (4)

with Φp(r,±∞; r0, z0) = 0, Φp(∞, z; r0, z0) = 0, (5)

where v is the particle velocity, and σp the inelastic collision cross section with

nuclei of the interstellar gas.
Integrating over r0(r0, z0) for Φp(r; r0) with the weight of the source dis-

tribution Q(r0), we get the number density of the cosmic ray at r:

Np(r) =
∫ ∫ +∞

−∞
Q(r0)Φp(r; r0)dr0, (6)

and the explicit form of the solution at the Galactic plane including the rigidity

dependence is given by

Np(r; R) =
Qr

Dr

Iν(Ur,R)z̄2R−β

Ur,RIν−1(Ur,R)
, with β = γ + α, (7)

where

Ur,R = 2νR−α/2

√
σp

σr
, with σr =

Dr

nrcz 2
D

, (8)
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Iν(a) =
∫ 1

0
tωIν(at)dt, with ω = 2ν/ν∗ − ν − 1, (9)

where ν∗ is given by replacing zn into zQ in ν defined by Eq. (3). Iν , Iν−1 are the

modified Bessel function with index of ν and ν − 1 respectively, and Dr, nr and
Qr are given by Eqs. (1a)-(1c) with z=0, respectively.

For typical values, D0=1028cm2/sec, n0=1cm−3, and zD=1Kpc, appearing
in σr at the Galactic center (r=0), we have σ0=34.94mb, which is comparable

with the inelastic cross section of proton with the interstellar gas. One should
note also Np(r; R) ∝ R−β for R → ∞ in Eq. (7).

4. Result and Discussion

In Fig. 1, we demonstrate the energy spectra of typical primary compo-
nents[5], where the vertical axis is multiplied by E2.5

P (EP : kinetic energy per

particle). We can not conclude which set of (γ, α) appearing in Eq. (2) is the best
in this figure alone, namely both sets, for instance (2.4∼2.5, 1/3) and (2.2∼2.3,

1/2), are consistent with the data as long as β (=γ + α) is fixed to 2.7-2.8, where
α = 1/3 corresponds to a Kolmogorov-type of the turbulence, and α = 1/2 to a

Kraichnan-type.

Now, we would like to stress that there are clear bending points in Fig. 1,
somewhere around 10GeV for proton, while ∼1000GeV/particle for iron, increas-

ing with mass number A. The bending energy/particle, EB, is obtained easily by
solving d[RbNp]/dR = 0 with use of Eq. (7), (b = 2.5 in Fig. 1)

EB 	 EB,0

[
1 + ω̄2R−α

B,0

2α

β − b

σp

σr

]
. (10)

Here σr is defined by Eq. (8), and we introduced following variables

EB,0

AMu

=
2b − β

β − b
, with EB,0 	 ZRB,0, (11)

and

ω̄ =

√
1 + ν�

1 + ν̄
, with

1

ν�
=

1

ν
+

1

ν∗
, (12)

where Mu is the atomic mass unit (=931.5MeV), and A, Z are the mass num-
ber and the atomic number of the primary element respectively. For instance,

EB,0/A=9.3GeV/nucleon for β=2.73, b=2.5, consistent with Fig. 1 in the first
order approximation.

One finds also that the bending energy in the second order approximation
increases gradually with larger cross section σp in Eq. (10), which is approximately

proportional to A2/3. Based on the preliminary analysis with use of additional
data such as 2-ry/1-ry ratio[6], 10Be/9Be[7], diffused-γ[8], we find rn≈rQ≈15Kpc,
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Fig. 1. Energy spectra for individual elements (filled symbols: RUNJOB data[9]).

(zD, zn, zQ)≈(1.2, 0.5, 0.15)Kpc, n0≈1.2cm−3, and D0≈2.0 · 1028cm2/sec at 1GV,
while another choice is not yet exculded in this stage. With use of these numerical

values, we find EB=9.9GeV for proton, and 1180GeV/particle for iron, giving a
quite consistent result with Fig. 1.

In the present paper, we focused on the high energy region only, and will
report the result for the low energy region around 1 GeV/n, where the reacceler-

ation process and ionization loss becomes effective.
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