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Abstract

Cosmic rays may provide some physical realization of the Henon-Heiles

type Hamiltonian model which is otherwise wild enough. Keeping this view in
mind, we investigate the Henon-Heiles type Hamiltonian with indefinite kinetic

energy term. Though it is oversimplified, imposing cosmological constraint and
taking the advantage of indefinite kinetic energy term the Hamiltonian can be

proposed for general relativistic situation. Thus we are able to find out some new
integrability conditions of the Hamiltonian.

1. Introduction

The concept of Cosmological constraint, that is, zero total energy (Kinetic

+ Potential) is implicit with the popular model for the origin of the universe.
In this model universe forms out of a metastable false vacuum which undergoes

inflation. In principle, this formation may be possible by the head-on interaction
of two ultra energetic cosmic ray particles. Perhaps two cosmic ray protons each

with the Plank energy (1027 eV) will be sufficient [5]. Being motivated by this
idea, the concept of Cosmological constraint can be applied in the discussion of

Hênon-Heiles type Hamiltonian which is extensively studied in nonlinear dynamics
but still lacking of proper physical realization.

2. Hamiltonian with Indefinite Kinetic Energy Form

Hênon-Heiles model Hamiltonian was first introduced as a model for the

motion of a star inside a galaxy[1]. This Hamiltonian can also be interpreted
as a model for a single particle moving in two dimension under the action of

a force described by a potential energy function. The generalized form of the
Hênon-Heiles type Hamiltonian can be written as[2]

H =
1

2
(p2

x + p2
y) +

1

2
(Ax2 + By2) + (

1

3
Cy3 + Dx2y) (1)

where A, B, C and D are (real) parameters, x and y are the spatial coordinates,

and px and py are the corresponding conjugate moementa. But in our proposed
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situation, at least for the toy-representation, in addition to the nonlinear char-
acter the Hamiltonian should be in pseudo-Riemannian space. This condition

can be satisfied if we find the Hamiltonian with indefinite kinetic energy form
and impose cosmological constraint. Eventually Hamiltonian structurally simi-

lar to(1) but with indefinite kinetic energy form is found in different contexts[2].
For our purpose we consider a general Hamiltonian (with arbitrary parameters

A, B, C and D) of the form which can also represent coupled upper-hybrid and
magnetoacoustic waves including both positive and negative group dispersion:

H =
1

2
(πE

2 + pπN
2) +

1

2
(AE2 + BN2) +

1

3
(CN3 + DNE2) (2)

where p = ± and πE ≡ dE
dξ

, πN ≡ dN
dξ

are, respectively, the cannonical momenta

conjugate to E and N. When p=-1, that is, for positive group dispersion the ki-
netic energy term is indefinite.

(ii) When the dependent variable of the usual KDV equation is made complex,
the resulting form of the equation can be dervied from a Hamiltonian having in-

definite kinetic energy term.
(iii) Similarly, if the dependent variable is made complex, the Hamiltonian repre-

senting classical dynamical systems with one-degree of freedom becomes

H(q, p) → H1 + iH2 ≡
[
1

2
(p2

1 − p2
2) + V1(q1, q2)

]
+ i [p1p2 + V2(q1, q2)]

The kinetic energy term in H1 is not positive definite.

3. Hamiltonian in Pseudo-Riemannian Space

Maupertius principle allows one to reduce the Hamiltonian flows to the

geodesic flows on Riemannian spaces equipped with the Jacobi metrices. Then
the problem of local instability (integrability) appears as the problem of studying

the geodesic deviation equation[3]. Therefore , we make an attempt to consider
the Hamiltonian in Riemannian geometric context. As the kinetic energy form of

the Hamiltonian(2), with p=-1, is indefinite, the case can be treated as pseudo-
Riemannian [3]. This inspires one to study instability(integrability)of a dynamical

system through geometrical method. The Hamiltonian attributing the Rieman-
nian space can be taken in the form

H(p, q) =
1

2
ηαβpαpβ + V (q)

Thereafter, through the Jacobi metric

gαβ = 2|(h − V )|ηαβ

with parameter s(t) along a geodesic where ds
dt

= 2|h − V | , and h , the total

energy function , the Hamiltonian flows can be reduced to the geodesic flow
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in Riemannian space. Assuming Hamiltonian constraint ie h=0 to characterise
pseudo-Riemannian space we can have

gαβ = 2|V |ηαβ (3)

Here ,

ηαβ =

(
η11 η12

η21 η22

)
=

(
1 0

0 1

)
(4)

and,

V =
1

2

(
AE2 + BN2

)
+

1

3

(
CN3 + DNE2

)
(5)

4. Integrability through Gaussian Curvature

Geodesic deviation equation corresponding to a dynamical system in a

general two-dimensional case can be expressed as [3]

D2n

ds2
+ K̂n = 0 (6)

where n is geodesic deviation vector and K̂ is the Gaussian curvature. Now it
is easily observed that the geodesic flow is locally unstable if the Ricci scalar

(Gaussian curvature, asK̂ = 1
2
R̂, where R̂ is the Ricci scalar )is negative[4].

Moreover , R̂ = 0 , reflects the integrability of the model [4].
We write the Hamiltonian(2) in terms of p(p1, p2) and q(q1, q2) as

H =
1

2

(
p2

1 + pp2
2

)
+

1

2

(
Aq2

1 + Bq2

)
+

1

3

(
Cq3

2 + Dq2
1q2

)
(7)

The Jacobi metric is

gαβ = 2|V (q1, q2)|ηαβ

where ηαβ = dig (1,−1)

=⇒ gαβ =
1

2|V (q1, q2)|η
αβ (8)

Here,

V =
1

2

(
Aq2

1 + Bq2
2

)
+
(

1

3
Cq3

2 + Dq2
1q2

)
(9)

gαβ = 2
∣∣∣∣12
(
Aq2

1 + Bq2
2

)
+
(

1

3
Cq3

2 + Dq2
1q2

)∣∣∣∣ ηαβ

Gaussian curvature K̂ is given by

K̂ =
Rhijk

ghjgik − gkkgij
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Here the only nonvanishing Rhijkis R1212 due to(4).

R1212 =

−1
2A (A + b) q2

1 + 1
2B (A + B) q2

2

+
(

1
3AC − 2

3C2 + 2
3BC + 2

3CD + BD
)

q3
2

+
(

5
3BD − 8

3AD − AC
)

q2
1q2 +

(
−10

3 D2 + 4
3CD

)
q2
1q

2
2 + D2q4

1 + C2q4
2

V
(10)

For complete integrability of the Hamiltonian(2), the folloing cases are reported
by [2] : Case I: Arbitrary A, B and C=pD Case II: B=pA and C=pD Case III: B=16pA
and C=16pD. In our approach , we investigate integrable cases subject to R1212 = 0 with
p = −1. We are not able to recover the case (I) and case (III) even in particular context.
But for case(II) , that is, when B = −A,C = −D, the Hamiltonian is integrable
provided q2

2 = −5q2
1 and, q1 = −5i

√
5

24 The result seems interesting because (q1+q2) gives
a complex number and complexification of the dependent variable offers a Hamiltonian
with indefinite kinetic energy term, representing classical dynamical system with one
degree of freedom[2].

As the reported cases of integrability [2] shows C ∝ pD, hence for p=-1, C and
D should have opposite signs. But for the coupled waves that can be represented by
the Hamiltonian(2), the parameters C and D are, by definition,positive definite. Hence,
it is reported by Rao[2] that if the above result strictly holds good, then, it appears
that there are no integrable cases for the coupled upper-hybrid and magnetoacoustic
waves when the group dispersion is positive. However, in our approach, for A=-B,
C=D(positive), Hamiltonian becomes integrable provided q2 = 2

√
2q1 and q1 = −75

26 .
Interestingly, in this case, (q1 + q2) is not a complex number.

5. Conclusion

In the context of the motivating idea, our works can only be viewed as toy model.
But Einstein’s astonishing principle, “field strength=curvature” has been extended by
physicists, and now all the field strengths occurring in elementary particle physics(which
are required in order to construct a Lagrangian) are discussed in terms of curvature and
connections but it is the curvature of a vector bundle, that is, the field space that arises
not the curvature of space time. So if the assumed interaction is between two protons,
and integrability is searched through curvature, perhaps the consideration of the idea
of vector bundle will be proper.
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1. Hênon M and Heiles C, 1964, Astrophys. J, 69, 73
2. Rao N. N. , 1996, PRAMANA-journal of physics, 46, 161
3. Szydlowski Marek and Szczesny, 1994, Phys. Rev. D 50, 819
4. Szydlowski Marek and Biesiada Marek, 1991, Phys. Rev. D 44, 2369
5. Wolfendale A.W, 1993, Proc. 23rd ICRC, Rapporteur, P143


