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Abstract

Although the Molière theory of multiple Coulomb scattering is less accu-

rate in tracing solid angles than the Goudsmit and Saunderson theory due to
the small angle approximation, it still acts very important roles in developments

of high-efficient simulation codes of relativistic charged particles like cosmic-ray
particles. Molière expansion is well explained by the physical model, that is the

normal distribution attributing to the high-frequent moderate scatterings and
subsequent correction terms attributing to the additive large-angle scatterings.

Based on these physical concepts, we have improved a high-accurate and high-
efficient Monte Carlo code taking account of ionization loss.

1. Introduction

We have confirmed the Molière process of multiple Coulomb scattering
is well explained by the splitting model of single scattering cross-section [1,2].

High-frequent moderate scattering less than the splitting angle produces the cen-
tral gaussian distribution as a first approximation and the low-frequent large-angle

scattering larger than the splitting angle gives the far reaching long tail to the
angular distribution. We have examined the Molière process by Monte Carlo sim-

ulations with Rutherford cross-section and searched for the most effective splitting
angle to divide the single scattering into the moderate and the large-angle scat-

terings.

In case of the splitting angle of χB or eB/2 times the screening angle√
eχa, corresponding to the Molière expansion, the traversed thickness is not thick

enough for the moderate scattering to produce gaussian distribution, so that the
distortion from the gaussian distribution due to the higher approximation terms

are found in the central distribution. On the other hand in case of the splitting
angle of χC, well known as the threshold angle to give the large-angle scattering

once within the traversed thickness, we have confirmed the moderate scatterings
produce accurate enough central gaussian distribution with the predicted width

in our Monte Carlo investigations. So we have thought it most effective to sepa-
rate the single scattering at χC, to replace the resultant deflections from multiple

pp. 1499–1502 c©2003 by Universal Academy Press, Inc.



1500

moderate scatterings with the gaussian distribution, and to add the large-angle
scattering stochastically once within the traversed thickness on average.

For very thin thickness, we cannot apply multiple scattering theory any
more as well as the above sampling method, where we apply the single-scattering

sampling directly. Smooth transfer between the both samplings has been con-
firmed in this investigation.

We can apply this method also under the ionization process. The results
obtained by the present theory and method is compared with those by the tra-

ditional method of fixed energy, where the thickness is divided into many small

stepsizes so as particle energies not to be changed much [3].

2. Central distributions produced by high-frequent moderate scatter-

ings

According to the splitting cross-section method [1,2], the Molière angular
distribution is reconstructed by the folding integrals between the central distri-

bution produced by moderate scatterings and the k-times large-angle scattering.
Although the multiple moderate scatterings below the splitting angle should reach

to the gaussian distribution after traverse of thick enough depths, it is not clear
which shape the central distribution will make after the traverse of certain finite

depths. We have examined the shape of central distribution for splitting angles

of χB and χC.
Central distribution will be predicted from

df̃

dt
= 2πf̃

∫ ∞

0
[J0(ζθ) − 1]σM(θ)θdθ. (1)

Taking account of the higher-order Fourier components indicated as e.g. (A12) of

Scott [4], we have

2πf̃M = exp[−θ2
Mζ2

4
]{1 +

1

4B
(1 − e−B)e2−2C(

θ2
Mζ2

4
)2 + · · ·} (2)

for splitting angle of χB, so that

2πfM(ϑ)d�ϑ = d�ϑ{f (0)(ϑ) +
1

2B
(1 − e−B)e2−2Cf

(2)
2 (ϑ) + · · ·} (3)

with ϑ ≡ θ/(θG

√
B/Ω). Likewise we have

2πfM(ϑ)d�ϑ = d�ϑ{f (0)(ϑ) +
1

2(lnnR)2
(1 − 1

nR

)f
(2)
2 (ϑ) + · · ·} (4)

with ϑ ≡ θ/(χC

√
lnnR) for splitting angle of χC. Considerable distortion from

the gaussian is seen for splitting at χB as indicated in Fig. 1, on the other hand
good agreements with the gaussian is seen for splitting at χC as indicated in Fig.

2.
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Fig. 1. Central distribution pro-
duced by the moderate scattering,
divided at χB. x denotes ϑ2.
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Fig. 2. Central distribution pro-
duced by the moderate scattering,
divided at χC. x denotes ϑ2.

3. Smooth continuation between the Rutherford sampling and the

splitting cross-section sampling

The splitting cross-section sampling is formulated by Poisson probability
distribution as

f(ϑ)d�ϑ = e−pd�ϑ
∞∑

k=0

1

k!
pkN ∗ σ

(k)
L , (5)

where p denotes the mean number of large-angle scattering σL within the depth
and N ∗ σ

(k)
L denotes the folding integral of the central distribution N produced

by the moderate scattering σM and the k-times large-angle scattering σ
(k)
L .

It is well known that the Molière formula breaks at very thin thicknesses,

where N becomes far different from gaussian distribution or splitting angle be-
comes smaller than the screening angle. In these thicknesses we apply the Ruther-

ford sampling formulated as

f(ϑ)d�ϑ = e−pd�ϑ
∞∑

k=0

1

k!
pkσ

(k)
R , (6)

where σ
(k)
R denotes the k-times single scattering and p denotes the mean number

of single scattering σR within the depth. We show in Fig. 3 smooth continuation

between those, where we took χC of p = 1 as the splitting angle.
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Fig. 3. Continuation of Molière angular
distributions derived by the Ruther-
ford sampling and our χC-cut sam-
pling. t = e2k+1Ωe−Ω with k = 1, 2, 3,
from left to right.

4. Multiple-scattering sampling

under the ionization process

The most characteristic aspect of

our simulation code will be the high-
accuracy and the high-efficiency of the

method, based on the Molière theory
with ionization [5]. We can get the

Molière angular distribution with ion-
ization by one sampling sequence. We

had to separate the penetrating passage
into many short stepsizes in the tradi-

tional method so as energies of particle
not to be changed much within the indi-

vidual step. The Molière angular distri-
bution with ionization derived through

our sequence agrees well with that
through the traditional method, even

with E-loss of 90% as indicated in Fig.

4.

5. Conclusions and discussions

A new simulation code for the
multiple Coulomb scattering process is

developed, based on the Molière theory
with ionization. We use the splitting
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Fig. 4. Molière angular distributions for
100 GeV muon with E-loss of 90%, de-
rived by our χC-cut sampling and the
traditional sampling.

cross-section method dividing at χC,
where we have confirmed the moderate

scattering produces the gaussian distri-
bution and the additive large-angle scat-

tering above χC well reproduces the
Molière angular distribution in enough

high accuracy. Smooth continuation has
been confirmed between the Rutherford

sampling at very thin thicknesses and
the splitting cross-section sampling at

ordinary thicknesses. Accuracies and ef-
ficiencies of simulation for the Molière

process has been extremely improved es-
pecially under the ionization process.
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