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Abstract

We have examined the properties of Molière multiple-scattering process
by dividing the single scattering into the high-frequency moderate scattering and

the low-frequency large-angle scattering. We took the splitting angle of the cross-

section as an arbitrary constant and investigated the resultant configuration of
angular distribution by using Kamata-Nishimura formulation of the Molière the-

ory.

1. Introduction

Owing to the Kamata-Nishimura formulation or the differential formula-
tion of Molière theory [1,2], it has become far easy for us to investigate properties

of multiple Coulomb scattering process in general. We discuss this time the re-
sults of Molière process derived through single-scattering splitting method and

investigate dynamic properties of Molière process under both the fixed-energy
and the ionization processes.

2. Arbitrary splitting of the single-scattering at χ′
B and an extended

formulation of Molière process

We start with the single scattering cross-section under the extreme rela-

tivistic condition [3]:

σ(θ)2πθdθdt =
1

πΩ

K2

E2
θ−42πθdθdt with θ >

√
eχa. (1)

We introduce a splitting angle χ′
B to divide the cross-section σ into the moderate

scattering σM and the large-angle scattering σL as indicated in Fig. 1:

σ(θ) = σM(θ) + σL(θ), with (2)√
eχa = (K/E)e−Ω/2+1−C , and χ′

B ≡ eB′/2
√

eχa. (3)

Then the diffusion equation

d

dt
f(�θ, t) =

∫∫
{f(�θ − �θ′, t) − f(�θ, t)}σ(�θ′)d�θ′ (4)
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is described in the frequency space as

df̃

dt
= 2πf̃

∫ ∞

0
[J0(ζθ) − 1]{σM(θ) + σL(θ)}θdθ. (5)

The integration is evaluated in the first order by using Eq. (14) of Bethe [4], as

∫ ∞

0
[J0(ζθ) − 1]σM(θ)2πθdθ � −B′

Ω

K2ζ2

4E2
, (6)

∫ ∞

0
[J0(ζθ) − 1]σL(θ)2πθdθ � 1

Ω

K2ζ2

4E2
ln(

K2ζ2

4E2
eB′−Ω). (7)

So we get an extended Molière equation corresponding to the arbitrary splitting
of the single-scattering:

df̃

dt
= −B′

Ω

K2ζ2

4E2
f̃{1 − 1

B′ ln(
K2ζ2

4E2
eB′−Ω)}. (8)

Under the ionization process of a constant rate, there hold

∫ t

0

K2

E2
dt =

K2t

E0E
and

∫ t

0

K2

E2
ln

K2

E2
dt =

K2t

E0E
ln

K2

νE0E
(9)

with ν = e2(E/E0)
(E0+E)/(E0−E). (10)

Thus we have

f̃ =
1

2π
exp{−θ′2Mζ2

4
(1 − 1

B′ [ln
θ′2Mζ2

4
− ln τ ])} with (11)

θ′2M ≡ B′

Ω
θ2
G =

B′

Ω

K2t

E0E
and τ ≡ ν

E/E0

θ′2M
χ′2

B

e2−2C . (12)

Using ϑ ≡ θ/θ′M, we have the angular distribution in a double series with B′−1

and ln τ , similar as Eq. (5) of our preceding paper [5]:

2πf(ϑ) = f (0)(ϑ) +
1

B′{f (1)(ϑ) + f
(1)
1 (ϑ) ln τ}

+
1

B′2{f (2)(ϑ) + f
(2)
1 (ϑ) ln τ + f

(2)
2 (ϑ)(ln τ)2} + · · · . (13)

3. An adequate splitting to interpret Molière expansion

As B′ was remained as an arbitrary constant, we can take B′ so as ln τ
vanishes, or

χ′2
B =

ν

E/E0
θ′2Me2−2C . (14)
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Fig. 1. Separation of the single
scattering σ at χB to the mod-
erate scattering σM and the
large-angle scattering σL.
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Fig. 2. The expansion parame-
ter B can be determined by a
successive method.

Substituting Eqs. (3) and (12), we find Eq. (14) gives

B − ln B = Ω − lnΩ + ln(νt) (15)

to determine the exact expansion parameter B, as well as the adequate scale angle

θM and the separation angle χB of Molière case:

θM = θG

√
B/Ω and χB ≡ eB/2

√
eχa. (16)

Then Eq. (13) becomes the simple single series of Molière:

2πf(ϑ) = f (0)(ϑ) + B−1f (1)(ϑ) + B−2f (2)(ϑ) + · · · . (17)

4. Successive derivation of B and an interpretation of multiple scat-

tering process

Molière B can be also derived by a successive method by Eq. (14), as

indicated in Fig. 2. Qualitative feature of the Molière B is studied from a first
approximation of B derived by substituting θG instead of θ′M on the right-hand

side of Eq. (14).
Under the fixed-energy conditions, Eq. (14) becomes

χ′2
B = θ′2Me2−2C (18)

and θG is expressed by K
√

t/E. So the first approximation of χB increases
monotonously as t1/2 with the traversed thickness, on the other hand

√
eχa stays

constant. B′ is defined in (3) by a half of logarithm of the ratio χ′
B/

√
eχa.
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Fig. 3. B is evaluated by putting
θM = θG as a first approximation under
the fixed-energy process.

So we can understand B increases

monotonously with the traversed thick-

ness, as indicated in Fig. 3. Under the
ionization process, both ν and E/E0 in

Eq. (14) decrease monotonously with the
traversed thickness. So a rough estima-

tion of B could be made by neglecting
the factor ν/(E/E0) and substituting

θ2
G = K2t/(E0E) into θ′2M on the right-

hand side.
√

eχa increases proportion-

ally to E−1 with dissipation of energy
in this condition, on the other hand θG

increases more rapidly at first stage but
later it increases more slowly as propor-

tionally to E−1/2 than
√

eχa, as indi-
cated in Fig. 4. So B increases at first

stage of traverse, nevertheless it begins

to decrease in the latter stage under the
ionization process.

5. Conclusions and discussions

We found the Molière expansion

corresponds to the splitting angle at eB/2

times the screening angle, when the mod-

erate scattering gives the central gaus-

sian distribution and the large-angle scat-
tering only gives the tail-angle distribu-

tion and does not affect the shape of the
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Fig. 4. B is evaluated by neglecting
ν/(E/E0) and putting θM = θG as a
first approximation under the ioniza-
tion process.

central gaussian distribution. Mecha-
nism of depth-variation of Molière an-

gular distribution both under the fixed-
energy and the ionization processes is

also interpreted by the method. Formu-

lations developed here will be also valu-
able for investigations of Monte Carlo

code using the splitting cross-
section method [6,7,8].
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