Detection of Tau Neutrinos in Underwater Neutrino Telescopes

Edgar Bugaev,¹ Teresa Montaruli,^{2,3} and Igor Sokalski^{3,1}

(1) INR, 60th October Anniversary Prospect 7a, 117312, Moscow, Russia

(2) Physics Department, Bari University, Via Amendola 173, 70126 Bari, Italy

(3) INFN/Bari, Via Amendola 173, 70126 Bari, Italy

Abstract

If neutrinos produced in cosmological sources oscillate, neutrino telescopes can have a chance to detect signals from τ -neutrinos. We present an estimate of the 'double bang' event rate produced by ν_{τ} 's in km³ scale detectors.

1. Introduction

 $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations should lead to the proportion $\nu_e:\nu_{\mu}:\nu_{\tau}=1:1:1$ for neutrinos produced in cosmological sources that reach the Earth, though the flavor ratio at production is expected to be 1:2:0 (if all muons decay). Passing through the Earth, ν_{τ} 's generate τ -leptons via charged current (CC) interactions. Being short-lived particles, τ 's decay in flight producing ν_{τ} 's and (in ~35%) cases) also ν_{μ} 's or ν_{e} 's. Hence, neutrinos of all flavors undergo a regeneration process. The Earth is transparent for VHE ν_{τ} 's and, moreover, ν_{τ} 's are able to recover partially also $\nu_{\mu,e}$ fluxes for which the Earth is opaque at VHE. ν_{τ} 's can be detected via τ 's produced in CC interactions. At energies $E_{\nu} < 10^6 \,\text{GeV}$ τ range is short $(R_{\tau} < 30 \,\mathrm{m})$ and showers at CC interaction and τ decay vertices cannot be reconstructed separately in underwater/ice neutrino telescopes (UNT). Hence the 2 hadronic or hadronic+electromagnetic showers cannot be distinguished by a point-like hadronic+electromagnetic shower, produced by a ν_e . For $E_{\nu} \approx 10^{6 \div 7} \,\text{GeV}$ the 'double bang' (DB) signature (τ track between 2 showers at ν_{τ} interaction point and τ decay vertex [7]) can be a clear and background-free evidence of ν_{τ} detection. At $E_{\nu} > 3 \cdot 10^7 \,\text{GeV} \,\tau$ -lepton range becomes larger than 1 km and τ 's cannot be distinguished from muons in km³ scale UNT. Using the muon and τ propagation code MUM [13], we estimate that even though τ 's and muons have different energy loss properties, a lower energy muon can produce through stochastic processes showers with similar features than a τ -lepton.

Estimates of DB rates in km³ UNT were done in [1] for down-going ν_{τ} 's, while events from the lower hemisphere were not considered. Calculations of upgoing ν_{τ} propagation were done in [3]. It was concluded that, though VHE ν_{τ} 's are not absorbed by the Earth, their energies decrease; hence the amount of τ

pp. 1381–1384 ©2003 by Universal Academy Press, Inc.

Fig. 1. Spectra of astrophysical ν 's sampled according to the spectrum in [12] transformed after propagation through the Earth at 4 different nadir angles. Left column: no oscillations, $\nu_e:\nu_{\mu}:\nu_{\tau} = 1:2:0$, right column: oscillations with maximal mixing, $\nu_e:\nu_{\mu}:\nu_{\tau} = 1:1:1$. Thin solid lines: total incoming flux of astrophysical ν 's; thick solid (right panels), dashed and dash-dotted lines (overlapping in right panels): out-coming $\nu_{\tau} + \bar{\nu}_{\tau}$, $\nu_{\mu} + \bar{\nu}_{\mu}$, $\nu_e + \bar{\nu}_e$ after propagation through the Earth, respectively. $\nu_{\mu,e}$ spectra include secondary neutrinos produced by ν_{τ} 's. In the right part of each panel ν_{atm} spectra (conventional+prompt [10]) after propagation through the Earth are shown, upper thick markers: $\nu_{\mu} + \bar{\nu}_{\mu}$, lower thin markers: $\nu_e + \bar{\nu}_e$.

events in the DB energy range is low. In this work we present results of a MC simulation of astrophysical ν propagation through the Earth using 2 spectra [9,12] not considered in [1,3]. The rate of DB events in km³ scale UNT is estimated.

2. Method and Results

We simulate both DIS CC and NC interactions for all kind of neutrinos [8] in the energy range $10^3 \text{ GeV} < E_{\nu} < 10^9 \text{ GeV}$ using the CTEQ3_DIS structure functions. MUM [13] was used for τ propagation including the newest corrections for photo-nuclear interaction [2]. We used TAUOLA package [6] to generate the τ decays. Comparison of results for power-law spectra obtained by our algorithm with ones published in [4] showed a reasonable agreement. $\nu_{\mu,e}$ tracking is stopped after a CC interaction. τ 's produced in ν_{τ} CC interactions are propagated up to their decay vertex. Incident fluxes on Earth of ν 's are assumed equal to $\bar{\nu}$ fluxes

1382 -

Fig. 2. The same as in Fig. 1 but astrophysical neutrinos are generated according to Mannheim, Protheroe and Rachen upper limit on diffuse neutrino flux [9].

for all flavors. The background of atmospheric (πK) and prompt (RQPM) $\nu_{\mu,e}$'s is generated using spectra in [10]. Simulation results are presented in Fig. 1. We used the ν flux predicted by Protheroe [12] for an external photon optically thick proton blazar model. In Fig. 2 results are presented or an upper bound (not a model) on diffuse ν spectrum for optically thick AGN sources (thick solid line in Fig. 5 in [9]). ν_{τ} fluxes exceed $\nu_{\mu,e}$ ones remarkably up to nadir angles $\theta \sim 60^{\circ}$ since ν_{τ} 's are not absorbed by the Earth in contrast to $\nu_{\mu,e}$'s. But their spectra are shifted to lower energies due to energy degradation in regeneration process. For all θ , the outgoing flux of astrophysical neutrinos exceeds ν_{atm} flux at $E_{\nu} > (1 \div 3) \cdot 10^5 \,\text{GeV}$. Secondary $\nu_{\mu,e}$'s which are produced by τ decays contribute to total outgoing $\nu_{\mu,e}$ spectra with fractions 0.57, 0.18, 0.06, 0.02 (spectrum [12]) and 0.18, 0.06, 0.02, 0.01 (spectrum [9]) for nadir angles $\theta = 6^{\circ}$, 60° , 80° , and 85° , respectively. Analysis of ratio between muon rates and shower rates that may be an indirect signature of ν_{τ} appearance was presented in [3]. In this work we analyze direct ν_{τ} detection through DB signature. The rate of totally contained DB events is given by:

$$N = 2\pi \rho N_A \int_{-1}^{0(1)} \int_{E_{min}}^{\infty} V_{eff}(E_{\nu_{\tau}}, \theta) I(E_{\nu_{\tau}}, \theta) \sigma^{CC}(E_{\nu_{\tau}}) dE_{\nu_{\tau}} d(\cos \theta),$$
(1)

where N_A is the Avogadro number, ρ is medium density (we use $\rho = 1 \,\mathrm{g \, cm^{-3}}$ which is close to sea water/ice density), $I(E_{\nu_{\tau}}, \theta)$ is the differential ν_{τ} flux. The 1384 —

Earth shadowing effect is accounted for the lower hemisphere (upper limit of the integral 0, while $\cos \theta = 1$ is used to compute the number of events for the whole sphere); $V_{eff} = S_p(\theta) (L - R_\tau(E_{\nu_\tau}))$, with S_p projected area for tracks generated isotropically in azimuth at the fixed θ directions on a parallelepiped (IceCube-like $1\times1\times1$ km³ [5] and NEMO-like $1.4\times1.4\times0.6$ km³ [11]), L geometrical distance between entry and exit point, $R_\tau \tau$ -lepton range, σ^{CC} total CC ν cross section. $E_{min} = 2 \cdot 10^6$ GeV corresponds to τ -lepton range $R_\tau^{min} = 70$ m. DB can be considered as a background-free τ signature [7] since there should be no atmospheric μ which could produce 2 showers with comparable amount of photons. Nevertheless, this reasonable assumption needs to be verified through a full simulation. Table 1 shows DB rates for lower, upper and both hemispheres. Values for upper hemisphere are $3\div6$ times lower compared to [1] since more optimistic predictions for diffuse neutrino fluxes are used there.

Table 1. Number of totally contained DB events in km³ detector per year.

Spectrum	IceCube-like $(N_{-2\pi} / N_{2\pi} / N_{4\pi})$	NEMO-like $(N_{-2\pi} / N_{2\pi} / N_{4\pi})$
[12]	0.7 / 1.6 / 2.3	1.0 / 2.1 / 3.1
[9]	1.0 / 2.3 / 3.3	1.4 / 3.1 / 4.5

3. Conclusions

Based on optimistic models [9,12] for AGN diffuse neutrino fluxes we found that in km³ UNT one can expect a marginally observable rate of contained 'double bang' τ events.

- 1. Athar H. et al. 2000, Phys. Rev. D62, 093010
- 2. Bugaev E., Shlepin Yu. 2003, Phys. Rev. D67, 034027
- 3. Dutta S. I. et al. 2000, Phys. Rev. D62 123001
- 4. Dutta S. I. et al. 2002, Phys. Rev. D66 077302
- 5. IceCube project: http://icecube.wisc.edu/
- 6. Jadach S. et al. 1991, Comput. Phys. Commun. 64, 275
- 7. Learned J. G., Pakvasa S. 1995, Astropart. Phys. 3, 267
- 8. Generator that is based on cross sections described in Lipari P. et al. 1995, Phys. Rev. Lett. 74, 4384 with extension for VHE range by T. Montaruli
- 9. Mannheim K. et al. 2001, Phys. Rev. D63, 023003
- Naumov D. 2001, in Proc. of 2nd Workshop on Methodical Aspects of Underwater/Underground Telescopes, Hamburg, p.31
- 11. NEMO project: http://nemoweb.lns.infn.it/
- 12. Protheroe R. 1997 in Accretion Phenomena and Related Outflows, ed. Wickramasinghe et al. (Astronomical Society of the Pacific, San Francisco)
- 13. Sokalski I. et al. 2001, Phys. Rev., D64, 074015