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Abstract

Measurement of cosmic-ray proton, antiproton and muon spectra was car-
ried out at mountain altitude. We observed 2 × 105 protons and 102 antiprotons

in a kinetic energy region of 0.25 – 3.3 GeV. Zenith-angle dependence of proton
fluxes was obtained. Atmospheric muon spectra were measured simultaneously.

The observed antiproton spectrum showed some deviation from theoretical pre-
dictions particularly in a low energy region.

1. Introduction

Primary cosmic rays hit the Earth’s atmosphere and produce baryons and
mesons via hadronic interactions. Absolute fluxes of these “secondary cosmic

rays” can be calculated by using the primary cosmic-ray intensity and interac-
tion cross sections. Observation of the secondary cosmic rays is very important to

verify, or to improve, theoretical calculations. It is essentially important to under-
stand propagation process of the secondary particles inside the atmosphere. We

report new measurement of secondary cosmic ray spectra at mountain altitude.

2. Observations

We performed cosmic-ray observation at Norikura Observatory, ICRR,

University of Tokyo, Japan, in September 1999, with the BESS detector [1,2,11,17],
which was the same apparatus as we utilized to measure the primary protons and

antiprotons [3,9,12,13], as well as atmospheric muons at sea level [10]. The obser-
vatory is located at 2,770m above sea level. The vertical cutoff rigidities is 11.2 GV

[16]. During the observation, the mean atmospheric depth was 742 g/cm2.
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Fig. 1. Observed near-vertical flux of protons (left) and antiprotons (right). Calcu-
lated antiproton spectra are compared with the observed ones.

3. Results and Discussion

The measured energy spectra of protons and antiprotons are shown in

Fig. 1, together with the previous measurements at mountain altitude [4,7,8,15].
The antiproton spectrum is compared with theoretical predictions [5,18]. In this

analysis, the zenith angle (θz) was limited as cos θz ≥ 0.95 for protons, and
cos θz ≥ 0.84 for antiprotons, thus the obtained fluxes are “near-vertical” fluxes.

There is some disagreement among the proton fluxes shown in Fig. 1. According to
simple Monte Carlo simulations, the deviations can be explained by the different

altitudes and cutoff rigidities at their observation sites.

Fig. 2 shows zenith angle dependence of the observed proton flux in two
kinetic energy regions. The zenith angle dependence can be expected in a simple

one-dimensional approximation, F (cos θz) = F0 exp(X/λ(1−1/ cos θz)), where X
is the atmospheric depth and λ is the absorption mean free path of protons inside

the atmosphere. Dotted lines in Fig. 2 show the expectation, in which X/λ = 6
was assumed. Relatively good agreement was found between the observed data

and the calculation in the higher energy region. In the lower energy region,
however, significant discrepancy was found between them. These facts are most

likely due to the effect of angular spread of secondary protons produced via nuclear
interactions. The solid lines shown in Fig. 2 give the results of the analytic

calculation, in which the angular spread was taken into account. They reproduced
the observed data better than one-dimensional calculation in the whole energy

range.
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Fig. 2. Zenith angle dependence of proton flux. The dotted and solid lines show the
expected dependence in simple one-dimensional and three-dimensional calculations,
respectively.

The observed antiproton spectrum agrees with a theoretical calculation

by Stephens [18] above 1 GeV as shown in Fig. 1. On the other hand, the flux
below 1 GeV shows significant disagreement. In Ref. [18], production spectra

of antiprotons are calculated, and the result shows a sharp peak around 2 GeV.
This means that most antiprotons observed below 1 GeV are tertiary antiprotons,

those which have been produced inside the atmosphere and then lost their en-
ergies during the propagations in the atmosphere. In this case, cross sections in

p̄ + A(nuclei) processes are to be precisely treated for an accurate evaluation of

antiproton spectrum at mountain altitude. A recent work made with Monte Carlo
simulation reported a preliminary result which shows better agreement with the

observed spectrum [6].
The atmospheric muon spectra in a momentum range of 0.6 – 106 GeV/c

have been measured simultaneously. The results are reported in Ref. [14]. The
observed muon spectra showed much better agreement with theoretical prediction

than that of antiprotons. It shows that secondary meson productions are treated
rather properly in the theoretical calculations. However, secondary baryon inter-

action cross sections have to be modified so as to reproduce the observed antipro-
ton spectrum.
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4. Summary

We have measured proton, antiproton and muon spectra at Mt. Norikura,
Japan, where the atmospheric depth was 742 g/cm2. The zenith angle dependence

in the proton flux was observed. It suggests an importance of three-dimensional
effect of angular spread in secondary baryon productions. The calculated antipro-

ton flux agrees with our antiproton flux above 1 GeV. In a lower energy region,

however, our measurement gives much lower flux than that of the prediction.
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