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Abstract

Although the existence of cosmic rays with energies extending well above
1019 eV has been confirmed, their origin remains one of the most important

questions in particle astrophysics today. Several different types of anisotropy have
been proposed for the observed set of ultra high energy cosmic rays. Yet none

of these models have been conclusively identified as corresponding with all of the
available data. We propose a method by which one can use fractal dimensionality

analysis to make a global measurement that would indicate the presence of any

potential anisotropy. We will present the application of this analysis to the HiRes-
1 monocular data at ICRC 2003

1. Introduction

The observation of Ultra-High Energy Cosmic Rays (UHECRs) has now

spanned nearly three decades. Over that period, many different types of anisotropy
have been proposed to explain the origin of these remarkable events. Recently,

the Akeno Giant Air Shower Array (AGASA) reported clustering at small angular

scales for the events that were observed above 4×1019 eV [9]. However, this result
could not be confirmed by the High Resolution Fly’s Eye (HiRes) air fluorescence

detector [2] despite the fact that HiRes-1’s monocular aperture was more than
twice that of AGASA within the pertinent energy range [5]. HiRes also reported

that it did not see anisotropies when examining harmonics in right ascension, a
priori determined point sources or enhancement in the supergalactic plane. Fur-

thermore, a prior analysis by the original Fly’s Eye showed no evidence of any
anistropies when dependencies in galactic latitude and longitude, harmonics in

right ascension, excess maps, and specific a priori determined point sources were
examined [3,4]. In 1995, it was reported by Stanev et al. that the combined data

of Haverah Park, Yakutsk, and AGASA showed an excess along the supergalactic
plane with several potential point sources for events above 2 × 1019 eV [8].

All of these conflicting results bring up a very pertinent question: Is there
a more global way in which one could determine if a given sample possesses

any statistically significant anisotropy? We will show that by considering the
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information dimension (i.e. the “entropy” of the distribution of arrival directions)
of a given sample, one can simultaneously look for anisotropies at all angular

scales greater than the angular resolution of the sample. This method is extremely
robust, in that it can easily accomodate both asymmetric angular resolutions and

asymmetric apertures. Furthermore, in the event that a data sample is shown
to be consistent with an isotropic distribution, the same method can be used to

place upper limits on possible anisotropic source models. Because only a single
measurement is taken of the actual data, any number of potential anisotropies

can be considered without incurring statistical penalties.

2. Calculating the Information Dimension of a Data Sample

Fractal dimensionality is a simple measure of a structure’s scaling sym-

metry. By measuring the fractal dimension of a data sample, one can examine
its self-consistency at different levels of magnification. There are several ways of

going about this. From a computational perspective, the simplest way to examine
fractal dimensionality is to use box-counting. For most general case, the capacity

dimension, DC [6], one partitions one’s sample into equi-sized and equi-shaped

“boxes” with edge size ε. DC is then determined by considering the number of
boxes that actually possess data.

However, the capacity dimension has a very severe limitation: It only looks
for the presence of the sample within the available space, it does not consider

variations in the density of the sample at a given point in the data space. In cases
where the density may differ within the sample space, one can use the information

dimension DI [1,7]. DI is essentially a measurement of the “entropy” of a set of
data points. For a set of data points embedded on an n-dimensional manifold, a

completely homogeneous data sample will yield DI = n. Any heterogenity in the
data sample will lead to smaller values of DI.

3. Application to Arrival Direction Distributions for UHECRs

In principle, it is simple to calculate the information dimension for a given
sample of data points. However, there are a few complications that arise when one

considers a set of arrival directions of UHECRs. First of all, the arrival directions
are not known with complete precision. This makes the determination of DI for

ε → 0 meaningless. Secondly, the determination of DI requires that the sample
space be divided into equi-sized and equi-shaped bins. For a spherical surface, this

is strictly not possible. However, there are workable solutions for both of these
problems.
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3.1. Angular Resolution

The angular resolution of monocular events observed by the HiRes-1 detec-

tor consists of two asymmetric orthogonal gaussian terms. By considering large
sets of simulated events, one define these terms as follows: σ1, σ2:

σ1 = 20◦e−1.5 log10 EEeV + 4.5◦ (1)

σ2 = 100◦e−0.5∆χ + 0.4◦ (2)

where EEeV is the primary energy of the shower in EeV and ∆χ is the angular

track length (in degrees) of the shower as observed by the detector.
For the purpose of calculating DI, we can treat the arrival direction of

each individual shower as an elliptical gaussian distribution with the parameters
σ1, σ2. Each shower direction distribution will have NDist points. The bin size,

ε, will correspond to the scale length of the angular resolution of the sample
(ε � 0.5◦).

3.2. Latitudinal Binning

For the purpose of calculating DI, it also is necessary that all bins be

equi-sized and equi-shaped as we vary the value of ε. While it is impossible to

completely acheive this criterion on the surface of a sphere, we can to approxi-
mately do so by adopting a latitudinal binning scheme.

Latitudinal binning is achieved by first dividing the sky into Nδ declina-
tional bands where each band has a width

∆θ =
π

Nδ
(3)

We then determine that for each declinational band, the sky will be divided into
NRA,δ bins in right ascension where:

NRA,δ =
[
2π

∫ δ2
δ1 cos δ dδ

(∆θ)2

]
=

[
2(Nδ)

2
∫ δ2
δ1 cos δ dδ

π

]
(4)

Hence the solid angle, ∆Ωδ, of each bin (in steradians) is:

∆Ωδ =
2π

∫ δ2
δ1 cos δ dδ

NRA,δ
(5)

with a minimum value of (∆θ)2 (at the equator) and a maximum value of π
3
(∆θ)2

(at the poles) regardless of the value of Nδ. This provides us with bins that
are all almost the same area and nearly square-shaped (with the exception of

three triangular bins at each pole). The total number of bins in the sky can be
approximated by:

Nsky � 4π(
Nδ

π
)2 =

4

π
(Nδ)

2 (6)
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4. Results

By comparing the calculated values of DI for real and simulated sets, we
assess the probability that our event sample conforms with a given anisotropic

source model. Because we are relying on a measurement of a single parameter,
we will be able to consider any number of potential anisotropic source models

simultaneously without depleting the statistical significance of our findings. We

will present the application of this analysis on the HiRes-1 monocular data at
ICRC 2003.
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