Seasonal Variations in ⁷Be Radioactivity Measured at Ground Level

Masato Yoshimori,¹ Hiroshi Hirayama,¹ Sunao Mori,¹ and Kenichi Sasaki¹ (1) School of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan

Abstract

⁷Be radioactive nuclei with a half-life of 53.3 days result from spallation reactions of galactic cosmic rays and solar energetic particles with N and O nuclei in the Earth's atmosphere. The ground-level measurement of ⁷Be radioactivity in 2002-2003 shows seasonal variations which are enhanced in spring and fall seasons. In addition, ²¹⁰Pb radioactivity which is of terrestrial origin exhibits a similar trend of temporal variations. The variations are due to not the solar activity but the atmospheric effect. We discuss the possibility of the air mass mixing between the stratosphere and troposphere to explain the measured seasonal variations.

1. Introduction

Galactic cosmic rays (GCR) and solar energetic particles (SEP) interact with the Earth's atmospheric nuclei and produce many different isotopes. In particular, ⁷Be is a short-lived radioisotope (half-life is 53.3 days) which result from nuclear reaction of energetic protons with atmospheric N and O nuclei. GCR produce about two thirds of ⁷Be in the stratosphere and one third in the upper troposphere (Lal and Peters, 1967). The ⁷Be emits a gamma-ray line at 478 keV from the electron-capture process. The ⁷Be production rate is expected to exhibit the 11 years-period of solar activity because the GCR intensity varies with the solar activity. Moreover, a highly intense solar protons arrive at the Earth in association with a large solar proton event, though it is extremely rare. In fact, a surprising large concentration of ⁷Be associated with SEP events was measured with the satellites above 320 km (Fishman et al., 1991; Phillips et al., 2001).

On the other hand, the study of ⁷Be in the atmosphere provides important information on atmospheric transport processes. The source distribution of GCRproduced ⁷Be peaks around 20 km in altitude (Lal and Peters, 1967). Produced ⁷Be nuclei rapidly attach to aerosol particle in the upper atmosphere and fall to the Earth's surface. The ground-level measurement of ⁷Be radioactivity gives a clue on the air mass mixing between the stratosphere and troposphere.

In this paper we show the temporal variations in ⁷Be radioactivity on the surface in 2002-2003 and discuss the possibility of the air mass motion in the upper atmosphere.

pp. 4217–4220 ©2003 by Universal Academy Press, Inc.

4218 —

2. Ground-level Measurement of ⁷Be

We have started the ground-level measurement of ⁷Be radioactivity using a high-volume air sampler. A weekly deposition of ⁷Be has beem measured in Tokyo since January, 2002. The air sampler is located on the roof of building of School of Science of Rikkyo University. It has a collecting power of 1000 liters of air per one minute. The dry deposition sample is collected on the glass-fibre filter and several radioisotopes attach to the dry deposition sample. Gamma-rays emitted from these radioisopes is measured with a gamma-ray spectrometer. The spectrometer consists of a high-purity coaxial Ge gamma-ray detector surrounded with a 10 cm thick lead shield. The effective volume of the Ge detector is 90 cm^3 and the photopeak efficiency at 511 keV is 0.05. The energy resolution is 1.2keV (FWHM) at 478 keV. The lead shield of 10 cm thickness enables to reduce the background radiation level significantly. Pulse height spectrum analysis is made with a computer-based analyzer (4096 energy channels). A typical gammaray spectraum of the dry sample in 20-2100 keV is shown in Fig. 1. We see the strongest ⁷Be line at 478 keV. The lines at 46.5, 511 and 1461 keV result from ²¹⁰Pb, positron annihilation and ⁴⁰K, respectively. The expanded gammaray spectrum around the ⁷Be line is exhibited in Fig. 2. We determine ⁷Be radioactivity taking account a decay of ⁷Be (half-life of 53.3 days).

Fig. 1. Gamma-ray spectrum of the dry deposit sample.

First we show the time variations in the weekly dry deposit of ⁷Be in January 2002- May 2003 in Fig. 3. The data indicate definite temporal variations in the ⁷Be radioactivity. There are enhancements in the ⁷Be radioactivity in April

Fig. 2. Expanded gamma-ray spectrum of the ⁷Be line.

and November. The April peak is more significant than the November peak. In this period there was no extraordinary intense SEP event such as the July 14 event in 2000, suggesting that the measured enhancements in the ⁷Be radioactivity is not due to the solar effect. We propose that these enhancements result from the atmospheric effect.

Fig. 3. Time variations in ⁷Be radioactivity in January 2002 - May 20003.

3. Discussion

GCR produce most of ⁷Be in the stratosphere and the mean residense time is thought to be 14 months from the long-term temporal variations in ⁹⁰Sr radioactivity (Rehfeld and Heimann, 1995). This mean residense time is much longer than the half life of ⁷Be. ⁹⁰Sr is an artificial radioisotope deu to neuclear weapon test in high altitudes. On the othe hand, the mean residense time of ⁷Be produced in the troposphere by GCR is 22-35 days (Martell and Moore, 1974; Bleichrodt, 1978).The tropospheric ⁷Be contribute to the ⁷Be radioactivity at the ground level. If the ground-level ⁷Be radioactivity significantly enhances, it is expected that the stratospheric ⁷Be suddenly fall to the troposphere by the atmospheric effect.

As a possible mechanism, Reiter (1975) suggested stratospheric/ tropospheric air mass exchange process and Shapiro (1980) proposed that turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. Implications on stratosphere/troposphere air exchange were discussed from the distribution of ⁷Be in the troposphere (Viezee and Singh, 1980). Dibb (1989) and Feely et al. (1989) indicated that the stratospheric/tropospheric air mass mixing takes place in spring.

The seasonal variation in the ⁷Be radioactivity at the ground level is likely due to air mass mixing in spring and fall seasopns between the stratosphere and troposphere. We have simultaneously measured the time variations in the ²10Pb radiaoctivity (gamma-ray line at 46.5 keV). It shows the similar seasonal variations to that of ⁷Be radioactivity. ²¹⁰Pb is its daughter nucleus of ²³⁸U and a part of ²¹⁰Pb is emanated out of the Earth's crust into the higher atmosphere. The ²¹⁰Pb data seem to support the seasonal air mass mixing between the stratosphere and troposphere.

4. References

- 1. Bleichrodt R.H-J. 1978, J. Geophys. Res. 83, 3058
- 2. Dibb J.E. 1989, J. Geophys. Res. 94, 2262
- 3. Feely H.W. et al. 1989, J. Environ. Radioactivity 9, 223
- 4. Fishmen G.J. et al. 1991, Nature 349, 678
- 5. Lal J., Peters B. 1967, Encyclopedia of Physics 46/2, 551
- 6. Martell E.A., Moore H.E. 1974, J. Rech. Atmos. 8, 903
- 7. Phillipe G.W. et al. 2001, Geophys. Rev. Lett. 28, 939
- 8. Redfeld S., Heimann M. 1995, J. Geophys. Res. 100, 26141
- 9. Reiter E.R. 1985, Rev. Geophys. Space Phys. 13, 459
- 10. Shapiro M.H. 1980, J. Atmos. Sci. 37, 994
- 11. Viezee W., Singh H.B. 1980, Geophys. Res. Lett. 7, 805.