Octant degeneracy with neutrino oscillation experiments (T2KK+RENO/KASKA)

> Naotoshi Okamura (YITP) July 14, 2006 @ SNU now under writing

Contra

Contents

Short Review numerical analysis conditions effect of reactor exp. effect of detector in Korea impact from the octant degeneracy to hierarchy • to CP phase **Summary**

Short Review

Three ambiguity

Basic Strategy

transition probability

$$P(v_{\mu} \rightarrow v_{e}) = 4\sin^{2}\theta_{atm}\sin^{2}\theta_{rct}(1+A^{e})\sin^{2}\left(\frac{\Delta_{13}}{2}+B^{e}\right)$$

"transition probability" sensitive to the sin²θ_{atm}
When sin²θ_{ret} is measured by the reactor experiments, sin²θ_{atm} will be determined from transition probability

"Long" base-line enhance the matter effect.guess "T2KK is better than T2K for octant."

T2KK can solve the mass hierarchy.

Numerical Analysis

Condition

fiducial volume (100% efficiency)

- SK : 22.5 kton
- Korea : 100 kton

exposure time

- 5 years with 10^{21} POT/year (0.8MW)
- T2K-I running time

base-line and off-axis

- **SK** L=295km OA angle θ =3.0°
- Korea L=1000km OA angle θ =0.5°

maps are in http://www2.yukawa.kyoto-u.ac.jp/~okamura/T2KK

input parameters

Solar

• $\sin^2 2\theta = 0.84 \pm 0.07$, $\delta m^2 = (8.3 \pm 0.6) \times 10^{-5} \text{ eV}^2$

Atmospheric

• $\sin^2 2\theta = 0.99, 0.96, 0.91$ $\delta m^2 = (2.5 \pm 0.5) \times 10^{-3} \text{ eV}^2$

matter density (uncertainty : ±3%)

• $\rho = 2.8 / 3.0 \text{ (g/cm^3)} \text{ (SK/Korea)}$

others (uncertainty : ±3%)
flux normalization (each species)
CCQE cross section (v / anti-v)
fiducial volume (SK / Korea)

#total parameters:16

Event Number

CCQE event

- easy reconstruct the neutrino energy
- easy distinguish, *e*-like, μ -like

Binning

- bin width : 200MeV
- summation region (#event > 10)
 - 0.4 5.0 GeV for μ -like (SK/Korea)
 - 0.4 1.2 GeV for e-like (SK)
 - 0.4 2.8 GeV for e-like (Korea)

BG

- beam contamination
- <u>NOT</u> include NC background (π^0 ! $\gamma\gamma$, \Leftrightarrow *e*-shower)

all systematic error : 3%

 $f_{v_{\beta}}^{flux}$: flux normalization $f_{v_{\alpha}}^{QE}$: cross section $f_{V}^{SK/Kr}$: fiducial volume

octant in T2KK

sin ² 20	0.99	0.96	0.91
sig.	1σ	3σ	4σ

Reactor experiment

Far detector

impact from octant to the others

event number mainly determine the hierarchy

CP phase $(\sin^2\theta_{atm} = 0.40)$

error of CP phase is not drastically changed

CP phase $(\sin^2 \theta_{atm} = 0.60)$

error of CP phase is not drastically changed

summary

Need "reactor experiments" transition probability proportional to $\sin^2\theta_{\rm rct} \sin^2\theta_{\rm atm}$ Need "Far detector" matter effect enhance the transition probability mass hierarchy can be solved impact from the octant degeneracy to... • mass hierarchy : large $\sin^2\theta_{atm}$: good!! CP phase : there is additional region error of CP phase not so different

