HPD R&D

M. Tanaka1, Y. Kawai3, T. Abe2, H.Miyatake2, T.Uchida2 H. Aihara2, H. Kyushima3, M. Suyama3, M. Shiozawa4

High Energy Accelerator Research Organization University of Tokyo Hamamatsu Photonics K.K. Institute for Cosmic Ray Research

Outline

- Structure and characteristics
 - AD characteristics
 - Stability : sensitivity x gain variation
 - Pulse response
 - etc
- Readout system for performance test
 - Preamp
 - Waveform digitizer
 - Digital filter and data transfer
 - HV module for detector
- Performance
 - Signal
 - Timing resolution
 - Energy resolution
- Conclusion

Time and Energy resolution limiting factors for conventional PMTs

Timing resolution : $\sigma_{total}^2 = \sigma_{pc}^2 + \sigma_{em}^2$ 1st Dynode Gain, δ^{1st} : ~5 typ. $\sigma_{_{pc_em}} \propto 1/\sqrt{V_{_{pc_em}}}$ $\sigma_{_{om}} \propto 1/\sqrt{\delta^{^{1st}}}$ Photoelectron Energy resolution $\propto 1/\sqrt{\delta^{1st}}$ P.C. to em Electron Multiplier (Dynodes) Higher $V_{pc\ em}$ and δ^{1st} are the $\overline{\sigma}_{\text{pc}_\text{em}}$ $\overline{\sigma}_{\text{em}}$ keys, but σ_{total} Conventional PMT has poor δ^{1st} : ~20 at best SK type PMT

1

0.1

0.01

500

100

0

200

300

AD Bias Voltage [V]

400

- ✓ High $V_{pc_{ad}}$ also improves $\sigma_{pc_{em}}$
- \checkmark No stationary divider current
- ✓ Simpler structure : $\sim 1/30$ parts of the SK PMT
- The drawback is its 1/100 smaller Gain_tot than conventional PMT and larger Cdet

Summary table

Aperture	13 inch (8inch under developing)
Photocathode	Bialkali
AD size & Cdet	5mm ~40pF details in page 6
Gain	~10^5
Gain uniformity	$\sim 2\%(0^{\circ} \sim 70^{\circ}) < 5$ photons
Gain stability	Described in page7
Pulse response	Described in page8
Collection eff	Described in page9
Dark count	<20kHz@16kV
Dynamic range	~100pC
TTS	~400ps@20kV
# of parts	~1/30 of PMT
hydrostatic pressure	<1MPa

AD for HPD : C-V Characteristics

Acceleration test of HPD

Condition:

White light illuminates P.C. 4uA@HPD output \rightarrow 10^15 photons/month

> HV:18kV AD bias: 210 Initial gain ~ 10^5

Pulse response Time constant@leading edge : ~ 1nsec

Noise doesn't affect timing resolution.

Light source : pulsed laser(PW:~70ps, ~400nm)

Photoelectron Collection Efficiency and Effect of Magnetic Field (*Simulation*)

Readout system for performance test

Shaping Time [ns]

1000

Frontend electronics specification

Parameters	Values
Rise Time	1ns
Slew Rate	>~300V/µs
Dynamic Range * at HPD gain of 1x10 ⁵	125p.e. equivalent*
Estimated Attainable ENC	~2200 electrons for 40pF
r _{bb'}	~15Ω
ft of transistor	20GHz

Waveform sampling

AMC characteristics

- Digital filter
- Matched optimal filter is implemented in FPGA.

Extraction of Q and T info.

Developed components implementation for system test

This VME board was designed for general purpose.

HV supply

HPDs were sometimes broken To avoid accident/trouble by improper use modular HV system is developed.

developed HV system

Size (~500 x 500x 100 mm)

We've not started systemtest with the module yet.

Performance

Timing resolution

Energy resolution

(16kV 240V) 0.8ns/20=0.04ns sigma=~0.06ns)

Energy resolution@1p.e. vs HV

Noise due to weakness of dielectric strength at a part in HPD around 20kV

Timing resolution@1p.e. vs HV

The timing resolution of 0.2nsec is smaller than timing difference due to TTS position dep.

Timing resolution vs p.e.

Noise doesn't limit timing resolution at present.

Conclusion

- HPD characterization goes on.
- Long term stability test started.
 - HPD output became stable after ~10^13 photons illuminated.
- Developed all components (frontend, waveform sampler and digital filter) are implemented in DAQ system and used for HPD evaluation
 - Timing resolution:~200psec for 1 p.e.
 - Energy resolution:~20%
- Modular HV system is developed
- We'll evaluate stability of the HPD system include HV system.