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Results obtained in collaboration:

Nf = 0, 2: RBC (RIKEN-BNL-Columbia) collaboration:
YA, Dawson, Noaki, Soni, PRD 75 (2007) 014507.

Nf = 3: RBC/UKQCD collaborations in progress: YA, Boyle,
Cooney, Dawson, Del Debbio, Izubuchi, Lichtl, Soni, Tweedie.
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What is calculated

L = LSM + LB/

LB/ = C[µ] · (qq)(ql)[µ]

(qq)L/R(lq)L/R = ǫijk (qc i
PL/Rq j)(lcPL/Rqk )

A = C[µ] · 〈e+, π0|(ud)(eu)[µ]|p〉: example p → (π0, e+)

Hadronic part: 〈π0|(ud)u[µ]|p〉 is non-perturbative object,
thus needs help of lattice QCD.

µ ≃ 1 GeV.
2 tasks for lattice

◮ (ud)uren[µ] = Z [µ] · (ud)ubare

◮ 〈π0|(ud)ubare|p〉
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The Relevant Form Factor

q = k − p : momentum transfer

〈π0;~p|(ud)uL|p;~k , s〉 = PL[W0(q2) − iq/
mp

Wq(q2)]up(~k , s)

W0 / Wq : relevant / irrelevant form factor [JLQCD].

q : momentum of e+

〈e+;~q, s′|〈π0;~p|(ud)(eu)L|p;~k , s〉 = W0v c
e PLup + Wqv c

e
−iq/
mp

PRup

= W0 · (ve, up)L +
me

mp
Wq · (ve, up)R

Wq ≃ W0 from ChPT, lattice. Wq term negligible.
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Partial Width
written in terms of Wilson Coefficient and the relevant form factor W0

Γ(p → π0 + e+) =
mp

32π2
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,

LB/ =
∑

i

C i [µ] · Oi [µ]

W0

◮ depends on operator
◮ depends on initial and final state
◮ for initial nucleon state, we can calculate W0 for all the possible qqq

operators and final PS states.
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Hadronic Matrix Elements
Parity invariance of (lattice) QCD yields:

〈PS;~p|(qq)RqR |N;~k , s〉 = γ4〈PS;−~p|(qq)LqL|N;−~k , s〉,
〈PS;~p|(qq)LqR |N;~k , s〉 = γ4〈PS;−~p|(qq)RqL|N;−~k , s〉.

By mN ≥ mPS & ∆S ≤ 0, (p, n) → (π0,±, K +,0, η). All possible N → PS
matrix elements. Isospin symmetry (u ↔ d) reduces the number of MEs.

〈π0|(ud)R/LuL|p〉 = 〈π0|(du)R/LdL|n〉,
〈π+|(ud)R/LdL|p〉 = −〈π−|(du)R/LuL|n〉,
〈K 0|(us)R/LuL|p〉 = −〈K +|(ds)R/LdL|n〉,
〈K +|(us)R/LdL|p〉 = −〈K 0|(ds)R/LuL|n〉,
〈K +|(ud)R/LsL|p〉 = −〈K 0|(du)R/LsL|n〉,
〈K +|(ds)R/LuL|p〉 = −〈K 0|(us)R/LdL|n〉,
〈η|(ud)R/LuL|p〉 = −〈η|(du)R/LdL|n〉.

isospin limit

〈π+|(ud)d |p〉 =
√

2〈π0|(ud)u|p〉
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How to calculate W0

direct method: direct measurement through 3- and 2-point functions

indirect method: Chiral Perturbation Theory + Low Energy Constants
evaluated on the lattice

◮ Lχ
B(f , D, F , , , ) + Lχ

B/ (α, β), (D + F = gA)

◮ On the lattice, measure α and β

〈0|(ud)RuL|p〉 = αPLup,

〈0|(ud)LuL|p〉 = βPLup

◮ Reduction formula for p → π0:

W0(〈π0|(ud)RuL|p〉) = α(1 + D + F )/
√

2f ,

W0(〈π0|(ud)LuL|p〉) = β(1 + D + F )/
√

2f

◮ Reduction formula available for all the matrix elements
[Claudson-Wise-Hall, JLQCD].

◮ These are only the lowest order approximations. As the pion has
large momentum |~p| ≃ mp/2, the applicability is questionable.
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Systematic Errors
Potential systematic uncertainties in lattice calculations:

Systematic error of indirect methods:

◮ It is an approximation. Size of the error unknown.

Systematic errors for both direct and indirect methods:

◮ Lattice perturbation theory has far worse convergence than the
continuum perturbation.

◮ Finite lattice spacing a.
◮ Finite physical volume.
◮ Quenching:

⋆ Nf = 0: quenched approximation neglects vacuum polarization of all
quarks. Theory is non unitary.

⋆ Nf = 2: taking into account vacuum polarization of u, d quarks. s
quark is quenched.

⋆ Nf = 3: taking into account vacuum polarization of u, d s quarks, thus
free from quenching error.
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To reduce systematic errors
Solutions

◮ Use direct method.

◮ Use non-perturbative renormalization.
◮ Use lattice action which has the properties of continuum action as

much as possible. Take the continuum limit a → 0 or investigate a
dependence.

◮ Investigate finite volume dependence.
◮ Perform Nf = 3 simulation.

⋆ State-of-the-art supercomputer and recent algorithmic innovation
made it possible to simulate Nf = 3 even with our expensive fermions.

Our lattice action
◮ We use domain-wall fermions (DWF) for quarks.
◮ The lattice exact chiral symmetry is realized at Ls → ∞, where Ls is

the size of 5th dimension.
◮ We use Ls = 16, which induces the explicit chiral symmetry

breaking. But it is negligible in practice.
◮ Automatically O(a) improved: leading scaling violation absent
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Some checks
Non-perturbative Z 3/2

q /ZND for Nf = 3
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 for nucleon decay, from 4 srcs
Nf=2+1, Iwasaki, β=2.13, 16

3
x32, Ls=16, mf→−mres
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Off-diagonal elements are
consistent with zero, which is
expected from the exact chiral
symmetry.

Finite a and V effect of α − β for
Nf = 0

0 0.1 0.2 0.3 0.4 0.5
r

0
 m

q

0.4

0.5

0.6

−(
α−

β)
 r

03

a=0.1 fm
a=0.15 fm

Note: β ≃ −α.

Blue: L = 2.4 fm. We will use.

Red: L = 1.6 fm.

Finite a and V effects are
negligible.
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Low energy constants summary

α vs published year

1980 1990 2000 2010
year
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a=0 (CP-PACS & JLQCD)

a=0.1fm
(JLQCD)

DWF (RBC)

a=0.12 fm

a=0.15 fm

3f DWF preliminary
RBC/UKQCD
a=0.11 fm

phenomenology
lattice QCD quench
lattice QCD 2f DWF
lattice QCD 3f DWF

Matched to MS, NDR, µ = 2 GeV at NLO.

Nf = 3 result is still preliminary.

α = 0.01 GeV3 may be a representative value.

β ≃ −α.

But the story does not end....
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W0 summary
Nf = 0, a = 0.15 fm
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Similar pattern has been observed by JLQCD with a = 0.1 fm, Wilson
Fermion. Direct-indirect diff is larger here.

Indirect method tends to overestimate W0, results in underestimating
proton lifetime. Note: τ ∝ 1/W 2

0

Largest difference observed for p → π decay.
◮ τ(direct)/τ(indirect) = 2 − 4.

(If you do not care a factor 4 for the proton lifetime, you can safely use
indirect results.)
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Something’s wrong ?
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Direct method is preferable.
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Wdirect − W indirect(α, β)
must vanish in the soft pion limit
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Soft pion theorem is OK!

Nothing is wrong!
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Summary and Outlook

Fundamental quantity is W0.
For the indirect estimate of W0, α and β has been calculated for
Nf = 0 and 2, and is being calculated for Nf = 3.

◮ Preliminary Nf = 3 results are consistent with Nf = 0 and 2.

Direct estimate of W0 for all the possible states and operators
have been obtained for Nf = 0.
(SU(3) flavor breaking effects have not been taken into account for η).

Indirect method tends to overestimate W0 for Nf = 0,
underestimating proton lifetime.

◮ We need to do direct measurement of W0 for Nf = 3,
which is in preparation !

Remaining uncertainty is a dependence,
◮ which is expected to be small from the experience of Nf = 0.

This should be confirmed in future study.
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