Large Liquid Argon Detector R&D in the US

David Finley / Fermilab

NNN07: Workshop on Next generation Nucleon decay and Neutrino detectors

October 2-5, 2007 Hamamatsu Japan

Outline

- Recent Reports in the US
 - Long Baseline Study: Fermilab/Brookhaven
 - NuSAG = Neutrino Science Assessment Group:
 - US DOE/NSF HEPAP
 - Fermilab Steering Group
- Large Liquid Argon Detector R&D in the US
 - Materials Test Stand at Fermilab: Initial Use
 - Purity Demonstration: 20 ton
 - Electronics
 - Cellular TPC Design and construction techniques
 - Tracks at Yale
 - LANND and DUSEL
- Physics Efforts based on LArTPCs in US neutrino beams
 - T962 Status
 - MicroBooNE

The Future US Long Baseline Study

(excerpted from R. Rameika September 2007 report to DOE)

The charge to the Study participants by Montgomery of Fermilab and Dawson of BNL

Compare the accelerator-based neutrino oscillation physics potential of:

- Broadband beam to a DUSEL site
- Next Generation Off-Axis options
- Liquid Argon Detector
 - At DUSEL or
 - As a second NOvA detector
- Proton options
 - ~1 MW from existing accelerator complex
 - 1 2 MW
 - Proton Driver (~2MW)

Duration: March 2006 - May 2007; arXiv:0705.4396 (May 2007) David Finley / Fermilab at NNN07 Hamamatsu Japan October 4, 2007 Slide 3

The NuSAG Report (July 13, 2007)

(excerpted from R. Rameika September 2007 report to DOE)

- Simultaneous with the FNAL/BNL Study, NuSAG was also charged to explore the options for future US long baseline experiments.
- Focused on experiments to determine the neutrino mass hierarchy and δ CP
- Knowledge that sin²2θ₁₃ > 0.01 is REQUIRED before considering future options that use conventional neutrino beams (~ 1 MW beam power)
 - 1st results around 2012
- Main Conclusion : in the interim, focus on R&D towards intense beams and large detectors

NuSAG = Neutrino Science Assessment Group Reports to a DOE/NSF advisory panel

Available at: http://www.science.doe.gov/hep/hepap_reports.shtm

NuSAG Report ... in particular....

Recommendation 4. A phased R&D program with milestones ... [a] 50-100 kton detector is recommended for the liquid detector option. Upon completion of the existing R&D project to achieve purity sufficient for long drift times, to design low noise electronics, and to qualify materials, construction of a test module that could be exposed to a neutrino beam is recommended.

... and of course ...

... it should be 10 times less expensive per kton than today's LArTPC costs ...

Fermilab Steering Group develop roadmap for accelerator-based HEP program at Fermilab

http://www.fnal.gov/directorate/Longrange/Steering_Public/

Young-Kee Kim

P5 Meeting, Fermilab September 24, 2007

Letters and Proposals from the Community

Letters from the Community

- 1. John Marriner (May 5, 2007)
- 2. Norman Gelfand (May 8, 2007)
- 3. <u>Stanley Brodsky (May 31, 2007)</u>
- 4. <u>Steve Geer et al. (June 8, 2007)</u>
- 5. <u>Buck Field (June 12, 2007)</u>
- 6. Chuck Ankenbrandt et al (June 12, 2007)
- 7. <u>Maury Goodman (July 7, 2007)</u>

One Page Proposals from the community

- 1. 6GeV ILC Test Linac Giorgio Apollinari and Bob Webber (May 7, 2007)
- 2. LAr TPC in FNAL's Neutrino Beams David Finley (May 29, 2007)
- Precision Neutrino Scattering at Tevatron Janet Conrad and Peter Fisher (May 29, 2007)
- Very Large Cherenkov Detector Milind Diwan et al (June 5, 2007)
- 5. From Tevatron to Muon Storage Ring Terry Goldman (June 6, 2007)
- 6. Antimatter Gravity Experiment Thomas Phillips (June 7, 2007)
- 7. <u>Neutrino Oscillation with high energy/intensity beam Henryk Piekarz (June 10, 2007)</u>
- 8. Space-Time Ripples Study Nikolai Andreev (June 11, 2007)
- 9. Fixed Targer Charm Expt Jeff Appel and Alan Schwartz (June 11, 2007)
- 10. <u>Stopped Pion Neutrino Source Kate Scholberg (June 11, 2007)</u>
- 11. UNO Experiment Change Kee Jung (June 11, 2007)
- 12. <u>n-nbar Transition Search at DUSEL Yuri Kamyshkov (June 11, 2007)</u>
- 13. <u>8GeV cw Superconducting Linac Ankenbrandt et al. (June 12, 2007)</u>
 - . Neutrino Expt with 5kton LAr TPC Fleming and Rameika (June 12, 2007)
- 15. <u>MicroBooNE Fleming and Willis (June 12, 2007)</u>
- 16. delta_s Rex Tayloe (June 14, 2007)
- Expression of Interest (EOI)
 - 1. <u>mu to e conversion William Molzon (May, 2007)</u>
 - 2. <u>me to e conversion E.J. Prebys, J.P. Miller et al (May, 2007)</u>
 - 3. Klong to pi0 nu nu D. Bryman et al (June 11, 2007)

Letter of Intent (LOI)

1. Low- and Medium-Energy Anti-Proton Physics - D. Kaplan et al (June 1, 2007)

(from Y.K. Kim talk to P5 September 24, 2007)

Very similar physics as MODULAr

2 100kt LAr detectors at 1st(700 km) & 2nd(810 km) oscillation maxima w/ NuMI beamline One 100 kt LAr (or 300 kt water Cerenkov) at 1300 km using a wide-band v beam A large v detector in DUSEL would also be a world-class proton decay detector, addressing "Do all the forces become one?"

(from Y.K. Kim talk to P5 September 24, 2007)

Outline

- Recent Reports in the US
 - Long Baseline Study: Fermilab/Brookhaven
 - NuSAG = Neutrino Science Assessment Group:
 - US DOE/NSF HEPAP
 - Fermilab Steering Group

Large Liquid Argon Detector R&D in the US

- Materials Test Stand at Fermilab: Initial Use
- Purity Demonstration: 20 ton
- Electronics
- Cellular TPC Design and construction techniques
- Tracks at Yale
- LANND and DUSEL
- Physics Efforts based on LArTPCs in the US
 - T962 Status
 - MicroBooNE

One of Fermilab's R&D areas (PAB)

Materials Test Station

Have tested two items and are developing systematic discipline (figuring out what it is telling us).

Using the Materials Test Station (1)

Insertion Basket ("Sample Cage")

- Put materials in the Insertion Basket.
- Seal the Purge Lock with window (not shown).
- Choose to evacuate the Purge Lock (or not).
- Purge with pure argon gas (available above the pure liquid in the dewar).
- Continue on next slide

Using the Materials Test Station (2)

• Open the Isolation Valve.

• Lower the Elevator into the liquid, or into the gas above the liquid.

- Monitor lifetime with Purity Monitor.
- Understand results.

Materials Test Station: Sample # 1

PAB Materials Test System

Date

Sample # 1 Logbook Page 118

Sample Description Kapton dad conductor

08/28/07

Sample Composition Kapton and Copper Sample Weight Sample Exposed Area 16.5 ins^2 Verifiers S.Pordes, D. Finley Source of Sample A. Rubbia Wipe with alcohol Sample Prep. A. Rubbia, S. Pordes **Results to:** Purge Duration (hrs) 16 Purge 02 Reading(ppm) 0.02 CV AV CS Before Dunk: AS DT Lifetime Level T_m Psig 150 3000 18.4 18.8 276 1628 18.4 93.5 6.4 100 2000 12.4 13.6 390 2263 18.4 93.5 6.4 1350 7.8 9 556 2461 18.4 93.5 6.4 67 5.6 45 880 4.6 826 2647 18.4 93.5 6.4 93.5 30 600 2.6 3.5 1192 2954 18.4 6.4 2391 Valve Open CV AV CS AS DT Lifetime Level T_m Psig 150 3000 16.9 18 276 2157 18.4 93.4 6.4 100 2000 12 13.2 384 2319 18.4 93.4 6.3 1350 8.9 554 2577 18.4 93.4 6.3 66 7.6 45 880 5.6 816 2660 18.4 93.4 6.3 4.6 30 600 2.7 3.4 1192 2535 18.4 93.4 6.3 2450 In Liquid Argon CV AV CS AS DT Lifetime Level T_m Psig 150 3000 17.1 18.1 276 2057 18.1 93.3 6.3 8.30 1.04 83.80 186.34 0.0728 54.71 1.25 100 2000 11.9 12.7 386 1959 18.1 93.3 6.3 55.87 76.51 1.37 11.60 1.05 124.22 0.0520 67 1350 7.7 8.4 554 1973 18.1 93.3 6.3 37.43 83.85 0.0363 110.47 1.55 16.63 1.07 45 880 5.4 824 2372 18.1 93.3 4.6 6.3 25.14 1.11 54.66 0.0243 160.41 1.85 24.87 2457 18.1 93.3 30 600 2.5 3.1 1184 6.3 37 27 0.0170 234 69 2163 A possible change in lifetime from 2.4 ms to 08/28/07 Name S. Pordes Date 2.15 ms .. This is typical of what happens when A possible change in lifetime from 2.4 ms to 2.15 ms .. This is typical of Comments what happens when we lower the elevator. At face value, this corresponds we lower the elevator. At face value, this to adding an impurity with a lifetime of (1/2.15 - 1/2.4)^-1 = 20 ms corresponds to adding an impurity with a Please suggest other interesting tests lifetime of $(1/2.15 - 1/2.4)^{-1} = 20 \text{ ms}$

Purity Demonstration without evacuation

- The purpose is to demonstrate the feasibility of achieving the purity of liquid argon required for a 5kton TPC detector (as a specific example), explicitly without evacuation of the containment tank or the TPC, and to estimate the costs associated with the required purification system.
- A suitable demonstration, or a true prototype, could:
 - be at least ~150tons,
 - use a scaled down version of the proposed 5kton purification system,
 - have a fully functioning TPC,
 - be located in a neutrino beam (at Fermilab for example),
 - be on the surface (to understand impact of cosmic rays on the 5kton),
 - and measure all that neutrinos do in liquid argon.
- But (to be as cheap as possible), a first step can use a 20ton vessel.
 - Still must use a scaled down version of the purification required for 5ktons.
 - But: can be single wall containment vessel, constructed by industry, small enough to be delivered by highway, with the ability to put TPC materials in it (but a functioning TPC is not required).
- This 20ton step has been designed and costed: ~\$310,000 to buy the equipment, assemble it and do the demonstration. It can be done in less than a year.

... and a TPC for Electronics Development

Developing T962 electronics, intend to do cold electronics, etc However: Has not seen liquid argon yet.

Cellular TPC Design Concept: Scaling wire panels

A 5 ton detector is a cylinder 5 meters high with diameter 1 meter.A 150 ton detector is a cylinder 5 meters high with diameter 5 meters.A 5 kton detector is a cylinder 17 meters high with diameter 17 metersEtc etc, on to 100 kton, for example.

The transverse dimension is partly modular - more panels, similar drift distances.

Cellular TPC Design Concept: High Voltage distribution

David Finley / Fermilab at NNN07 Hamamatsu Japan October 4, 2007

Cellular TPC R&D: High Voltage "stave"

- This HV stave is for a tank with 150 tons of total LAr mass
- 16 HV staves, each 3.6 m tall and
 1.04 m wide are made of G10,
 copper, resistors, etc
- The copper strips face the inside of the tank and provide a cos (theta) distribution of voltage
- Parts of these (plus parts from the wire panels and light panels) could serve as TPC materials for the Material Test Station as well as the purity demonstration.

Hans Jostlein and the summer student who built this first stave are shown

Cellular TPC R&D: HV distribution

The resistor chain gives an ~cos(theta) voltage distribution which in turn provides a (very nearly) uniform electric field throughout the TPC volume, thus allowing full use of (nearly) all the liquid argon.

Cellular TPC R&D: Ribs give proper curvature

Hans and a student are holding a rib. The top of the rib shown in the picture has the curvature needed for the copper strips on the inside of the HV stave. A set of these ribs is installed underneath the stave and are hidden in this photo.

Cellular TPC R&D: Light weight "stave"

The support structure which provides the curvature shows one rib at the left end. The structure has holes in it to allow the argon to flow freely.

One complete stave is lightweight.

Summer student from Minnesota with the first HV stave

David Finley / Fermilab at NNN07 Hamamatsu Japan October 4, 2007

Slide 23

Cellular TPC Design Concept: Wire Panel and Light Collection Panel

Real materials can be tested in the 20ton purity demonstration.

The spaces between adjacent stainless steel tubes are used for the scintillator panels ("wave shifter sheets") as shown below.

David Finley / Fermilab at NNN07 Hamamatsu Japan October 4, 2007

Slide 24

Cellular TPC Design Concept: Light Collection Using Sheets of Plastic Scintillator

• Need to understand effects of nitrogen on light propagation in the liquid argon.

• Need to create wavelength shifter appropriate for large area panel.

• Need to demonstrate the chosen materials do not pollute the argon liquid. Some Nice Cellular Design Features

- Cellular design allows for the "cells" and "staves" to be built away from the site, by any of many collaborators. And they can be subjected to quality control before arriving at the site.
- The cells are then assembled in the completed tank. This allows the construction of the TPC to be done in parallel with the tank.

Outline

- Recent Reports in the US
 - Long Baseline Study: Fermilab/Brookhaven
 - NuSAG = Neutrino Science Assessment Group:
 - US DOE/NSF HEPAP
 - Fermilab Steering Group

Large Liquid Argon Detector R&D in the US

- 1 Materials Test Stand at Fermilab: Initial Use
- 2 Purity Demonstration: 20 ton
- 3 Electronics
- 4 Cellular TPC Design and construction techniques
 - Tracks at Yale
 - LANND and DUSEL

ques "Big Detectors"

This Fermilab-led

LArTPC R&D is all

- Physics Efforts based on LArTPCs in the US
 - T962 Status
 - MicroBooNE

Tracks at Yale

TPC test setup at Yale with filters and TPC from Fermilab and electronics from Padova

Courtesy Alessandro Curioni / Yale

A LINE OF LIQUID ARGON TPC DETECTORS SCALABLE IN MASS FROM 200 TONS TO 100 KTONS

David B. Cline¹, Fabrizio Raffaelli² and Franco Sergiampietri^{1,2}

¹ Astrophysics Division, Department of Physics & Astronomy, University of California, Los Angeles, CA 90095 USA

² INFN-Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, ITALY

Designed with DUSEL in mind

Large Liquid Argon Neutrino and Nucleon Decay Detector

LANNDD: SCALING

N. of cells/side	1	2	3	4	6	8
Total N. of cells	1	8	27	64	216	512
Total LAr volume [10 ³ m ³]	0.14	1.36	4.93	12.1	42.4	102
Active LAr volume [10 ³ m ³]	0.14	1.27	4.49	10.9	35.9	86.9
Active LAr mass [KTon]	0.19	1.78	6.28	15.2	50.3	122
Total inner beam length [Km]	0.08	0.34	0.89	1.83	5.37	11.8
Total heat input [KW]	0.3	1.0	2.1	3.7	8.1	14
Equiv. LN ₂ consumption [m ³ /d]	0.18	0.63	1.36	2.36	5.2	9.1
Equiv. El. Power-Cooling [KW]	2.8	9.8	21	37	81	140
N. of wire chambers	1	2	3	4	24	32
N. of channels [10 ³]	3.3	14	33	59	270	483
El. Power-Electronics [KW]	6	25	57	103	469	839

Homestake Lab Workshop, Lead South Dakota, February 9-11, 2006 D. B. Cline, F. Raffaelli and F. Sergiampietri, LANNDD 31

LANNDD: CONSTRAINTS AND GENERAL LINES - 4

In order to reach and maintain during years the required level of purity we consider as inalienable the following construction criteria and conditions:

- Possibility of generating vacuum inside the inner vessel and of checking its tightness
- Wise choice of construction materials (use of stainless steel for the inner vessel walls, for cathodes, for wire chamber frame and for electrical field shaping electrodes; possible use of alternative and cheaper alloys, as CORTEN, for the outer vessel)
- Continuous, adiabatic argon purification in liquid phase
- UHP and UHV standards for any device and cryogenic detail (flanges, valves, pipes, welding) in contact with the argon

Running costs are mainly related to the efficiency of the thermal insulation. Vacuum insulation, joint to the use of superinsulation jacket around the cold vessel, should be considered as the primary choice.

An optimized thermal insulation, with a low rate evaporation for LAr and low electric power involvement for cryogenerators, is also a <u>must</u> to <u>safely</u> operate the detector underground during tenths of years

Outline

- Recent Reports in the US
 - Long Baseline Study: Fermilab/Brookhaven
 - NuSAG = Neutrino Science Assessment Group:
 - US DOE/NSF HEPAP
 - Fermilab Steering Group
- Large Liquid Argon Detector R&D in the US
 - Materials Test Stand at Fermilab: Initial Use
 - Purity Demonstration: 20 ton
 - Electronics
 - Cellular TPC Design and construction techniques
 - Tracks at Yale
 - LANND and DUSEL
- Physics Efforts based on LArTPCs in the US
 - 1962 Status
 - MicroBooNE

ArgoNeuT (T962): Argon Neutrino Test

Expose a small (~250 liter active volume) LArTPC to the NuMI neutrino beam .See low energy (1-3 GeV) neutrino interactions in a LArTPC .specifically NC π° s and ν_{e} .gain experience operating stabily over months

These are firsts:

•only other TPC to see neutrinos was ICARUS 501 •50 liter volume •24 GeV beam •published ~100 ν_{μ} CCQE events Neither the 50 liter nor other TPCs (including T600) has operated continuously, for months, underground.

Courtesy Bonnie Fleming / Yale

funded via NSF CAREER grant

Cryostat: •~500 liters total volume •~250 liters active volume •.5 x .5 x 1m TPC

 $\sim 300 v_e CC$

Courtesy Bonnie Fleming / Yale

sit just upstream of the MINOS near detector (as PEANUT has done)

use MINOS as muon catcher

Scheduled run: Jan '08 to August '08

David Finley / Fermilab at NNN07 Hamamatsu Japan October 4, 2007

events/day

Slide 35

Brookhaven, Columbia, Fermilab, Michigan State, St, Mary's, Yale, UTAustin

Ideal detector to understand miniBooNE low energy excess: Liquid Argon TPC •sensitive at low energies •e/gamma separation •high efficiency for "signal" •low background

- •70 ton fiducial volume TPC
- •170 ton total volume
- .3 years at 2E20 pot/year
 - -> resolve miniBooNE excess

Courtesy Bonnie Fleming / Yale

Final Remarks

- ICARUS blazed the trail in liquid argon TPC R&D. Much of the US work towards large liquid argon TPCs, particularly the recent work, started with crucial help from the people associated with ICARUS.
- Fermilab has just finished the Materials Test Station and we encourage you to suggest materials to be tested, or to work with us to test materials.
- The needs for engineering development as well as physics development, as described in the 2005 report to NuSAG, still exist but progress is being made.

•Thank you!