GLACIER: A Giant Liquid Argon Charge Imaging ExpeRiment

André Rubbia (ETH Zürich)

Workshop on Next generation Nucleon decay and Neutrino detectors 2007 Oct 2-5 2007, Hamamatsu Japan

Basic detector concept: a 100 kton LAr TPC

Basic detector concept: a 100 kton LAr TPC

A. Rubbia

Baseline concept for inner detector

Baseline concept for inner detector

Baseline concept for inner detector

Broad and rich research program

- <u>Grand Unification</u>: proton decay investigated at the 10³⁵ yr range and study of atmospheric neutrinos (JHEP 0704:041,2007)
 - proton decay OK also "at shallow depth" (green field/hill)
- Low energy astrophysical neutrinos: SN core collapse (all neutrino flavors JCAP 0408:001,2004), relic SN v (JCAP 0412:002,2004), ...
- Long baseline U beams: 3rd generation experiment for θ_{13} mixing angle, CP violation and mass hierarchy e.g. with upgraded CERN SPS neutrino beam (JHEP 0611:032,2006)
- etc...

List not exhaustive

LAr TPC as proton decay detector

To reach 10³⁵ years sensitivity in lifetime a detector mass of ≈100 kton and 10 years of observation are required

Proton decay signals are characterized by:

★ their topology, with a lepton (electron, muon, neutrino) in the final state and few other particles

 \bigstar total energy of the event should be close to the nucleon mass and the total momentum should be balanced, apart from nuclear effects

A LAr TPC provides:

★ excellent tracking and calorimetric resolution to constrain the final state kinematics and suppress atmospheric neutrino background

 \star particularly suited to the 100÷1000 MeV/c range

 \star particle identification (in particular kaon tagging) for branching mode identification

★ access to many possible decay modes (since particle detection threshold essentially negligible)

JHEP 0704:041,2007

LAr TPC as high E neutrino detector

> provides high efficiency for v_e charged current interactions

> high rejection against v_{μ} NC and CC backgrounds also in MultiGeV region

e/π^o separation

fine longitudinal segmentation (few % X_0) – to be optimized !

fine transverse segmentation, finer than the typical spatial separation of the 2 γ 's from π^o decay

• e, μ/π , K, p separation

 embedded in a magnetic field provides the possibility to measure both wrong sign muons and wrong sign electrons samples in a neutrino factory beam
 unlike WC detectors, detection and reconstruction efficiency does *not* depend on volume

of detector \rightarrow direct near / far detector comparison (apart from flux extrapolation)

F. Arneodo et al., "Performance of a liquid argon time projection chamber exposed to the WANF neutrino beam", Phys. Rev. D 74 (2006) 112001

Data collected in 1997

Search for QE events

86 "golden" events with an identified proton of kinetic energy larger than 40 MeV and one muon matching NOMAD reconstruction

R&D program

- Funded R&D setups for charge & light readout, HV, feed-throughs, electronics, purification, long drift paths, ... (CH-SNF, ETHZ, IN2P3, Granada Univ, UniBe, UniZ)
- Tank design (Technodyne)
- ArDM I ton detector (J.Phys.Conf.Ser.39:129-132,2006)
- ArgonTube 5 m drift full test
- Magnetized TPC (NIM A555:294-309,2005)
- ePiLAr in particle beams, possibly magnetized TPC
- Detection of ≈I GeV neutrino beam
- LOI for 150 ton in T2K 2km site submitted to JPARC PAC & DOE
- European siting possibly at shallow depth to be studied within LAGUNA FP7 DS (PI A. Rubbia)
 → see Luigi Mosca's talk

Tank design: LNG technology

comes from underground installation (at this stage conservative factor x^2)

Scaling parameters & aspect ratio

100 kton:

kton:

A. Rubbia

Dewar	• \approx 70 m, height \approx 20 m, perlite insulated, heat input \approx 5 W/m ²
Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)
Argon total volume	73000 m³, ratio area/volume ≈ 15%
Argon total mass	102000 tons
Hydrostatic pressure at bottom	3 atmospheres
Inner detector dimensions	Disc ϕ ≈70 m located in gas phase above liquid phase
Charge readout electronics	100000 channels, 100 racks on top of the dewar
Scintillation light readout	Yes (also for triggering), 1000 immersed 8" PMTs with WLS
Visible light readout	Yes (Cerenkov light), 27000 immersed 8" PMTs of 20% coverage, single γ counting capability

40 kton: Φ=40 m, h=20 m 20 kton: Φ=30 m, h=20 m 10 kton: Φ=30 m, h=10 m

Dimensions confirmed by Technodyne

	Dewar	$\phi \approx 30$ m, height ≈ 10 m, perlite insulated, heat input ≈ 5 W/m ²	
	Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)	
	Argon total volume	7000 m³, ratio area/volume ≈ 33%	
	Argon total mass	9900 tons	
	Hydrostatic pressure at bottom	1.5 atmospheres	
	Inner detector dimensions	Disc ϕ ~30 m located in gas phase above liquid phase	
	Charge readout electronics	30000 channels, 30 racks on top of the dewar	
	Scintillation light readout	Yes (also for triggering), 300 immersed 8" PMTs with WLS	

1% prototype: engineering detector, $\phi \approx 10m$, $h \approx 10m$, shallow depth?

EU underground siting: a case study

EU underground siting: a case study

Test stands

Steps towards GLACIER...

A. Rubbia

First operation of a LAr TPC embedded in a B-field

First events in B-field (B=0.55T):

New J. Phys. 7 (2005) 63 NIM A 555 (2005) 294

150 mm

12

Layout for a magnetized detector

	10 kton LAr			100 kton LAr		Ar
Magnetic induction (T)	0.1	0.4	1.0	0.1	0.4	1.0
Magnetic volume (m ³)		7700		77000		
Stored magnetic energy (GJ)	0.03	0.5	3	0.3	5	30
Magnetomotive force (MAt)	0.8	3.2	8	1.6	6.4	16
Radial magnetic pressure (kPa)	4	64	400	4	64	400

Immersed normal or HTS superconductor solenoid

Workshop on Next generation Nucleon decay and Neutrino detectors 2007

Small test solenoid built wit HTS wire

Consists of 4 pancakes, total HTS wire length: 80m BSSCO from American Superconductor

Temperature	LN ₂ (77K)	LAr (87K)
Max. applied current	145 A	80 A
On-axis B-field	0.2 T	0.IIT
Coil resistance at 4A	6 μΩ	6 μΩ

Similar tests performed with YBCO from Superpower Inc

→ must operate at LN2 (or below) temperature (solenoid to be thermally insulated from LAr but still immersed in tank)

ArDM detector layout

Two-stage LEM Cockroft-Walton (Greinacher) chain: supplies the right voltages to the field shaper rings and the cathode up to 500 kV (E=1-4kV/cm)

Field shaping rings and support pillars

Cathode grid

14 PMTs below the cathode to detect the scintillation light

Workshop on Next generation Nucleon decay and Neutrino detectors 2007

October 2nd-5th 2007

Charge readout system: LEM

GEM: F. Sauli, NIM A386 (1997) 531 Optimized GEM: V. Peskov et al., NIM A433 (1999) 492 THGEM: R. Chechik et al., NIM A535 (2004) 303

LEM (Large Electron Multiplier) is a thick macroscopic GEM

Produced by standard Printed Circuit Board methods

- Double-sided copper-clad (35 µm layer) G-10 plates
- Precision holes by drilling
- Palladium deposition on Cu (<~ 1 µm layer) to avoid oxidization
- Single LEM Thickness: 1.5 mm
- Amplification hole diameter = $500 \ \mu m$
- Distance between centers of neighboring holes = 800 μm

guard

ring

Eterm=-5.8kV/cm

LEM operation in gas

Double phase operation with two stages LEM

October 2nd-5th 2007

Segmented LEM

- Final LEM charge readout system will be segmented
- Orthogonal strips readout
- Number of channels: 1024
- Strip width: 1.5mm

Kapton flex-prints are used for signal transfers to the readout electronics
The flex-prints, connected on one side to the LEM board, exit the dewar through a slot, sealed with epoxy-resin, in a vacuum tight feed-through flange

32 channels/cable

to front-end preamplifers

LEM readout electronics

Low noise charge preamp inspired from C. Boiano et al. IEEE Trans. Nucl. Sci. 52(2004)1931

1) Developing A/D conversion and DAQ system:

MHz serial ADC + FPGA + dual memory buffer + ARM microprocessor

2) Industrial version being developed with CAEN

Custom-made front-end charge preamp + shaper G ~15mV/fC 3) Development of F/E preamp in cold operation with IPN Lyon

Signal from double-phase setup

Light readout system

14 PMTs at the bottom of the detector immersed in LAr Photomultiplier tube: Hamamatsu R5912-02MOD 20.2 cm diameter

Wavelength shifter (WLS): Tetra-Phenyl-Butadiene (TPB) evaporated on reflector

Reflectivity @430nm ~97% Shifting eff. 128→430nm >97%

Tetratex reflecting foil

Light readout system

14 PMTs at the bottom of the detector immersed in LAr Photomultiplier tube: Hamamatsu R5912-02MOD 20.2 cm diameter

Wavelength shifter (WLS): Tetra-Phenyl-Butadiene (TPB) evaporated on reflector

Reflectivity @430nm ~97% Shifting eff. 128→430nm >97%

Tetratex reflecting foil

Workshop on Next generation Nucleon decay and Neutrino detectors 2007

Top flange

First test in early 2008

Assembly at CERN

Workshop on Next generation Nucleon decay and Neutrino detectors 2007

Cathode

October 2nd-5th 2007

ARGONTUBE

• Full scale measurement of long drift (5 m), signal attenuation and multiplication, effect of charge diffusion

- Simulate 'very long' drift (10-20 m) by reduced E field & LAr purity
- High voltage test (up to 500 kV)
- Measurement Rayleigh scattering length and attenuation length vs purity
- Charge readout and electronics optimization after long drift

Installation at the Uni Bern -Results expected in 2008

27

Conclusions

- Large liquid Argon TPCs, possibly magnetized, represent a detector technology with high potentials for "next generation experiments", combining new detector developments and excellent physics performance.
- We have presented our R&D program to extrapolate the liquid Argon TPC concept to O(100 kton) detectors. An R&D on magnetization with HTS conductors is also in progress.
- Improved understanding of detector performance does and will require dedicated setups of different sizes. Improved detector simulations, taking into new methods of readout, are needed.
- Our "roadmap" is to converge towards an improved design of a costcontrolled scalable liquid Argon TPC around 2010.

Can we afford high technology ?

This (not too serious) slide was inspired by the talk of Patrick Huber yesterday and some of the remarks that followed it

To my mind, a better measure is "cost / performance" (in any case, I agree that one must estimate cost and performance properly...)

The End

Cost estimates for GLACIER

ltem	100 kton	10 kton	l kton
LNG tank (see notes 1-2)	50÷100	20÷30	8
Inner detector mechanics	10	3	1
Charge readout detectors	15	5	1
Light readout	60 (with Č)	2 (w/o Č)	1
F/E & DAQ electronics	10	5	1
Miscellanea	10	5	1
Detector total	155 ÷ 205	40 ÷ 50	13
Refilling plant	25	10	2
Purification system	10	2	1
Civil engineering + excavation	30	5	2
Forced air ventilation	10	5	1
Safety	10	5	1
Merchant cost of LAr (see note 3)	100	10	1
Grand total	340 ÷ 390	77 ÷ 87	21
Super-conducting magnet	7	60	-

Notes:

(1) Range in cost of tank comes from site-dependence and current uncertainty in underground construction

(2) Cost of tank already includes necessary features for LAr TPC (surface electropolishing, hard roof for instrumentation, feed-throughs,...)

(3) LAr Merchant cost ≠ production cost. Fraction will be furnished from external companies and other fraction will be produced locally (by the refilling plant)