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Conceptual Design of UNO
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An Simulated Event in UNO

A high energy muon event

Up to ~36 GeV contained muon 
(SK: up to ~12 GeV contained muon)
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Location Location Location!

Denver

AirportHenderson
Mine 

~60 miles

Only 60 mi from an
international airport

Three research universities

Close to a major highway

Henderson Mine is a very 
modern mine and is in a very
clean environment

Close to resorts and dino-
land (for public outreach)
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Site of UNO at Henderson Mine

perturbed
rock

pristine
rockDecoupled

from the mining
activities

UNO
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Drilling and Rock Study

Drill-hole 02 Drill-hole 01

- Rock type: granite
- Very good rock quality
- No show stoppers!
- No Moly or Gold …

Funded by the collaborating
universities and State of
Colorado
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History of UNO

Proposed in 1999 at NNN99 

Whitepaper , July 2002 presented at Snowmass, signed by
23 institutions, 49 members: proto-collaborators
(22 institutions, 32 members: interest group)

UNO Narrative for HEPAP 2003 report

August, 2003: Proto-collaboration evolved to collaboration 

April 2004: The collaboration made up of
40 institutions, 94 members, and 7 countries ( has grown since 2002)

April 6, 2005 most recent UNO meeting in France followed by NNN05

EOI/R&D proposal 2005
Visit UNO website at http://nngroup.physics.sunysb.edu/uno/
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Physics Menu

Lepton number violation = neutrino oscillation
Very long baseline neutrino oscillation ( see Fermilab/BNL study report)

- Precise measurement of θ23 and ∆m2
23

- Measurement of θ13 and possibly δCP
- Determine the sign of ∆m2

23 to find out hierarchy
Atmospheric neutrinos (see Kajita@NOON04, Shiozawa@TAUP2004)

- Precise measurement of θ23 and ∆m2
23

- Possible measurement of θ13
Baryon number violation
Nucleon decays such as p->e+π0 and νK+ (and others in a long list)
n – n oscillation (|∆(B-L)|=2 process)
B-L violating nucleon decay such as p->e-π+π+

Astrophysics
Neutrinos from supernovae as far as galaxies in local group including M31
Relic neutrinos from past supernovae 
Solar neutrinos
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Very Long Baseline Neutrino Oscillation

Very long baseline wideband neutrino beam

Use more than one oscillation nodes
Avoid energy range where Fermi motion dominates
Use different behaviors of ν energy spectra at
different energy ranges

on-axis beam

1 o off-axis beam See M. Diwan’s talk
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Very Long Baseline Neutrino Oscillation

First full simulation by Stony Brook group (See NNN06 Proceedings)

Use of SK atmospheric neutrino MC (40% PMT coverage)
Standard SK-I analysis package + special π0 finder (POLfit)
Re-weight with the wideband beam spectra 
Normalize with QE events: 12,000 events for νµ , 84 events for beam
νe for 0.5 Mt F.V. with 5 years of running, 2,540 (1,480) km baseline

2.5 Mt x 1 MW x 107 sec
with BNL 28 GeV AGS

BNL to Homestake

Oscillation parameters used:
∆m2

21 =7.3 x 10- 5 eV2, ∆m2
31=2.5 x 10- 3eV2

Fermilab to Henderson

For details also: http://nngroup.physics.sunysb.edu/uno/publications.shtml.

sin22θij(12,23,13)=0.86/1.0/0.04, δCP=0,+45,+135,-45,-135o

Osc. prob. including matter effect (by B.Viren)
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Very Long Baseline Neutrino Oscillation

π0 detection capability of a water Cherenkov (=SK) with POLfit
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Very Long Baseline Neutrino Oscillation

νµ->νe oscillation 
νe + N -> e- + X (invisible) νµ->νe signal: Single e-like ring events

Major background sources:
NC π0 production, νx + N -> νx + π0 (->γγmissing) + X (invisible)
νe contamination in the neutrino beam Single e-like ring events

Event selection
Select single e-like ring events w/o π0 finder a la Super-Kamiokande
Turn on π0 finder and use its information to remove π0 events

π0 background removal 
Using 9 variables that carry information about nature of the e-like ring,
charge distribution, and about the event topology, two likelihood
functions are calculated for two hypotheses, signal or background.
For details: http://nngroup.physics.sunysb.edu/uno/publications.shtml or

NNN06 Proceedings
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Very Long Baseline Neutrino Oscillation

π0 background removal: log [lh(bkg)/lh(signal)]=∆ log likelihood 
• Apply a cut on ∆ log likelihood to retain 40% of signal after SK cuts
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Very Long Baseline Neutrino Oscillation

π0 background removal: log [lh(bkg)/lh(signal)]=∆ log likelihood 
• Apply a cut on ∆ log likelihood to retain 40% of signal after SK cuts
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Very Long Baseline Neutrino Oscillation

π0 background removal: log [lh(bkg)/lh(signal)]=∆ log likelihood 
• Apply a cut on ∆ log likelihood to retain 40% of signal after SK cuts
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Very Long Baseline Neutrino Oscillation

Granularity and π0 efficiency for same PMT coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180

Opening angle (deg)

π0  e
ff

ic
ie

n
cy

 Distance to PMT surface

●   5 m - 10 m

❍  15 m - 20 m

▲  25 m - 30 m

Expected improvement with UNO?

π0
de

te
ct

io
n 

ef
fic

ie
nc

y

opening angle (deg)

5 m – 10 m

15 m – 20 m

25 m – 30 m

minimum distance (dmin) to
PMT surface

fin
er

 g
ra

nu
la

rit
y

For smaller π0 opening angle finer
granularity is needed.

Compared with a smaller detector
π0 efficiency improves when the min.
distance increases when the opening
of two photons from π0 is smaller
than about 400.

What PMT coverage needed?
10,20,40% (SK-I and SK-III has 40%
coverage) ?

primary γ

secondary γ
dist>dmin



9/20/07 C. Yanagisawa, B-L Workshop 17

Very Long Baseline Neutrino Oscillation

Effect of granularity on π0 background/signal
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Proton Decays

Bench mark proton decay modes
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Proton Decay p->e+π0

Event selection (different from SK cuts)
• 2 or 3 e-like rings with Ering> 30 MeV
• No decay electron
• For 3-ring events:
0.085 < mγγ <0.185 MeV/c2 for SK PMT
0.010 <       <0.220              for ¼ SK PMT

• 0< χ2 <6 from kinematical fit:
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• Pb= |Σpi|<0.2 GeV/c after the fit

For 2-ring events with mγe=mp

From K. Nakamura, NNN06
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Proton Decay p->e+π0

Sensitivity at 90% C.L.
• Central compartment (40% PMT coverage, FV=0.151 Mt)

-Expected background 0.11 ev/yr
- εsignal=0.34
- sensitivity 5.4 x 1034 yr (10 yrs)

9.3 x 1034 yr (20 yrs)
• Side compartment (10% PMT coverage, FV=0.292 Mt)

-Expected background 0.39 ev/yr
- εsignal=0.24
- sensitivity 5.0 x 1034 yr (10 yrs)

7.1 x 1034 yr (20 yrs)
• All compartments (FV=0.443 Mt)

-Expected background 0.50 ev/yr
- εsignal (effective)=0.28
- sensitivity 8.2 x 1034 yr (10 yrs)

1.2 x 1035 yr (20 yrs)
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Proton Decay p->νK+

From K. Nakamura, NNN06
t=0

Most promising among 3 standard Super-K analyses (Nakamura NNN06)
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Proton Decay p->νK+

Photocathode coverage vs. eff.
40% -> 20%   vs.  8.6% ->4.7%
for the same background level.
It is not yet known how much the
efficiency will be reduced for the
PMT coverage of 10% -> for future
study.
A good news is : most of background
events come from misfitted vertex position.
(Shiozawa NNN02)

Results from Hyper-K study (Nakamura NNN06)
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Proton Decay p->νK+

Keep the same background rejection power and the same efficiency for
the SK-I PMT coverage:

SK-I coverage (40%) 
½ SK-I coverage (20%) 

¼ SK-I coverage (10%) 

εI = 8.6%
εII ~ 4.7%

assume

For SK-I PMT coverage (K. Nakamura, NNN06)

UNO with 40%+40% coverage (UNO40):
F.V.eff =0.44 Mt
UNO with 40%+20% coverage (UNO20):
F.V.eff = 0.31 Mt with 40% PMT coverage.

UNO40 20 yearsUNO40 10 years

Case for UNO (with tagging of prompt γ ) 

UNO with 40%+10% coverage (UNO):
F.V.eff = 0.22 Mt with 40% PMT coverage.

ε1/4 ~ 2.1%?

UNO20 10 years
UNO     10 years
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Proton Decay p->νK+ and p->e-π+π+

Potential improvement For SK-I PMT coverage (Shiozawa, NNN02)

Major background

UNO40 20 years
UNO40 10 years
UNO20 10 years
UNO     10 years

- ~6 events/Mtyr from single-ring
µ, π, and p events with misfitted
vertex position: Can be improved.

- If we manage to remove these,
then even 3σ sensitivity looks good. 
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Conclusions

UNO could be the key to advance our knowledge about neutrino:
- Precise measurement of θ23 and ∆m2

23
- Measurement of θ13 and possibly δCP
- Determine the sign of ∆m2

23 to find out hierarchy
See Fermilab/BNL study report : arXiv.0705.4396
Also a detailed study of water Cherenkov at :
http://nngroup.physics.sunysb.edu/UNO/publications or NNN06 Proceedings 

UNO could be the key to open a door to new era of particle physics
if Nature is kind enough to let us detect nucleon decays.

UNO would be one of the most cost-effective multi-purpose detectors,
given the rich list of physics to be done.

More work needed to optimize the UNO design: 
PMT coverage, granularity, PMT performance, 
improvement of software
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Backups
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Very Long Baseline Neutrino Oscillation

Likelihood analysis using the following 9 variables:

∆ log π0-likelihood (∆log pi0like)
single ring-ness (dlfct)
total charge/primary ring energy (poa)
Cherenkov angle (ange)

π0 mass (pi0mass)
energy fraction (efrac)
cosθνe
π0-likelihood (pi0-like)
e-likelihood (e-like)
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Very Long Baseline Neutrino Oscillation

Breakdown of sources of signal and background events (2,540 km):
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Proton Decay p->e+π0

Distributions before and after χ2 fit (10 iterations)
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Proton Decay p->e+π0

χ2 vs. Pb
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Neutrinos from Supernovae

New SN explosions from local galaxies (including M31)

(Nakahata, NNN06)= Neutronization
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Neutrinos from Supernovae

What could UNO do if a SN exploded at 10 kpc?

For a SN at 10 kpc, UNO would detect 130k inverse beta decay events,
4.5k elastic scattering events, 4,500 NC events in the central compartment.
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High statistics might lead to our first observation of the birth of a black hole

UNO is big enough to observe a supernova explosion even in Andromeda

Neutral current events XvOv xx ++→+ γ16

where ,...,1515 NOX =T= 8 MeV

T= 6 MeV
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