understanding neutrino oscillations

José W. F. Valle

NNN07 workshop, Hamamatsu, Oct 2007

AHEP Group, IFIC, Valencia

• the basic phases are Majorana appearing e.g. in $\beta \beta_{0\nu}$ at $n \ge 2$

Schechter & JV, PRD23(80)1666, Bilenky etal 80, Doi etal 81

- the basic phases are Majorana appearing e.g. in $\beta\beta_{0\nu}$ at $n \ge 2$ Schechter & JV, PRD23(80)1666, Bilenky etal 80, Doi etal 81
- what oscillations can probe is the Dirac phase (2 co-cycle) $n \ge 3$

• in general K is NOT unitary eg in SEESAW hep-ph/0608101

 \Rightarrow NSI

SOLAR OSCILLATION PARAMETERS 2007

Maltoni et al, NJP 6 (2004) 122 hep-ph/0405172 version 6

news from KamLAND/Borexino

ATM OSCILLATION PARAMETERS 2007

THETA13 ROADMAP

LS : LENA, LAr : GLACIER, WC : MEMPHYS, UNO, HS, HK ...

other ways? D/N solar-nu studies

if no NSI

http://ahep.uv.es/

Akhmedov et al JHEP05 (2004) 057

Huber et al PRL88 (2002) 101804, PRD66, 013006 (2002)

MAXIMAL CPV from THEORY?

Hirsch et al hep-ph/0703046 PRL

CPV in LBL oscillations

so-contours of $\Delta P_{\nu\bar{\nu}} \equiv P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ for T2K w/ matter for **normal & inverse challenge** for T2K, NOvA, T2KK, ...

robustness: atm ok, solar NOT

role of reactors ...

- KamLAND has solved SNP
- identifying oscillation as "the" soln

LEPTON FLAVOR VIOLATION

NHL

Bernabeu et al, Branco, Rebelo and JV, Rius & JV, Gonzalez-Garcia & JV lakovac & Pilaftsis...

SUSY

 \Rightarrow

Hall, Kostelecky & Raby Borzumati & Masiero Hisano & Tobe, Casas & Ibarra; Antusch, Arganda, Herrero, Teixeira, loaquim & Rossi ...

M = 1 TeV, best-fit oscil param

Deppisch, Kosmas & JV NPB752 (2006) 80

hope for MEG 10^{-13} & PRISM 10^{-18}

WHICH SPECTRUM?

need for kinematical tests !

TRITIUM BETA DECAY

test absolute nu-mass scale

- Katrin will be next high precision nu-mass expt
- scales up size & source intensity

great challenge !!

VERY FAR FROM PROBING NH/IH

0-nu DBD

NME from Rodin, Faessler, Simkovic, Vogel http://ahep.uv.es/

SPECTRUM + ABSOLUTE SCALE + MAJ. PHASE

TH DBD LOWER BOUND?

TWO A_4 **MODELS**

Hirsch, et al, PRD72 (2005) 091301

sensitive to Majorana phase

Hirsch et al hep-ph/0703046 PRL

DBD limit depends on ATM angle

deviation from $\pi/4$

SIGNIFICANCE of 0-nu DBD

In a weak interaction gauge theory non-zero $\beta\beta_{0\nu}$ implies at least one neutrino is Majorana

tests majorana nature

IRRESPECTIVE OF MECHANISM

no such theorem for flavor violation

Big Bang neutrinos as cosmo probes

neutrinos probe deeper

http://ahep.uv.es/

time

CMB, LSS ... & M-nu SCALE

STILL FAR FROM PROBING NH/IH

NEUTRINOS BEFORE EWPT

spontaneous L-violation a la seesaw may explain BAU & DM ⇒ CMF

CMB & Decaying DARK MATTER

Lattanzi & Valle 0705.2406 [astro-ph] PRL 99, 121301 (2007)

$$\Omega_J h^2 = 1.6 \; \frac{m_J}{keV} \frac{n_J(t^*)}{n_\gamma(t^*)} e^{-t_0/\tau}$$

Thermal seesaw leptogenesis & oscill phase

Fukugita, Yanagida 86

Romao, Tortola, Hirsch, Valle arXiv:0707.2942

DIRAC NU-OSCILLATIONS PHASE IS ENOUGH

SCALE CAN BE LOW Hirsch et al PRD75 (2007) 011701

NEUTRINOS AS SNOVA-PROBE

OUTER H/L OSCILLS ATM SOL

e.g MINAKATA et al

NSI-INDUCED INNER RESONANCEValle PLB199 (1987) 432Nunokawa et al 96http://ahep.uv.es/Esteban-Pretel, Tomas, Valle arXiv:0704.0032 PRD76:053001,2007

Weinberg PRD22 (1980) 1694

hep-ph/0608101

Weinberg PRD22 (1980) 1694

Weinberg PRD22 (1980) 1694

which flavour structure

which scale

which flavour structure

which mechanism

 \Rightarrow ew-J

Weinberg PRD22 (1980) 1694

SEESAW hep-ph/0608101

many realizations

FIN

END: BACKUP SLIDES

from here on there is no logical order among slides

Cosmological magnetic fields

CMB & DDM

NEUTRINOS AS MESSENGERS

- neutrinos ideal to monitor the Universe, the interior of the sun, stars, etc
 - **Big Bang probes**
 - astro-probes
 - Sun ⇒
 - SN neutrinos
 - **HE neutrinos**

NEUTRINOS AS SN-PROBE-osc

Minakata et al, PLB542 (2002) 239

SN parameters from precise nu-properties

simulate nu-signal from 10 kpc galactic SN

(small θ_{13} approx)

improved SN-parameter determination

new effects in nu-conversions at SN-core (neutron-rich regime)

NEUTRINOS AS SN-PROBE-nsi

probing non-standard neutrino interactions with supernova neutrinos

Esteban-Pretel, Tomas, Valle arXiv:0704.0032

- simulate nu-signal from 10 kpc galactic SN
- new effects in nu-conversions in neutron-rich regime

a future galactic nu-signal will give us good info on nu-properties

PREDICTING NU-MASSES & MIXINGS

light slepton

PREDICTING NU-ANGLES-2

tri-bimaximal mixing at high energies

Harrison, Perkins & Scott

$$U_{\rm HPS} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \text{ gives}$$

$$\tan^2 \theta_{\text{ATM}} = \tan^2 \theta_{23}^0 = 1 \quad \sin^2 \theta_{\text{Chooz}} = \sin^2 \theta_{13}^0 = 0 \quad \tan^2 \theta_{\text{SOL}} = \tan^2 \theta_{12}^0 = \frac{1}{2}$$

mainly θ_{SOL} modified at low energies by radiative corrections

Hirsch, et al hep-ph/0606082 (mSUGRA)

celated work by

also Altarelli & Feruglio 06, He & Zee 06, Z Z Xing, ...

NU-MASSES AND EW SYMMETRY BREAKING

nu-OSCILLATIONS AS DEEP SOLAR PROBE

• e.g. R-zone MHD leads to density fluctuations

Burgess et al, Mon. Not. Roy. Astron.Soc. 348 (2004) 609

use precision solar-nu data to probe the sun beyond helioseismology
contraints Burgess et al, Astrophys.J.588 (2003) L65 & JCAP 0401 (2004) 007

GEO-NEUTRINOS

neutrinos from natural radioactive decays
in the Earth's interior give a 3d map

Fiorentini et al 🛛 🗲

• also, Earth matter effect on solar and supernova neutrino oscillations inside the Earth enable in principle reconstruct the Earth's electron number density profile.

GEOTOMOGRAPHY W/ SOLAR & SUPERNOVA NEUTRINOS Akhmedov et al JHEP06 (2005) 053

WHERE WE ARE 2007

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.6	7.3–8.1	7.1-8.3
$\Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	2.4	2.1 – 2.7	2.0–2.8
$\sin^2 heta_{12}$	0.32	0.28 - 0.37	0.26-0.40
$\sin^2 heta_{23}$	0.50	0.38-0.63	0.34–0.67
$\sin^2 heta_{13}$	0.007	≤ 0.033	≤ 0.050

Table I: Best-fit values, 2σ and 3σ intervals (1 d.o.f.) for the three–flavour neutrino oscillation parameters from global data including solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS) experiments.

http://ahep.uv.es/ M. Maltoni et al, NJP 6 (2004) 122 = hep-ph/0405172 v6

ROBUSTNESS OF ATM-NU global view

atm bounds on FC and NU nu-interactions upd of Fornengo et al, PRD65 (2002) 013010

FRAGILITY OF SOLAR-NU?

NS1

degenerate dark-side soln, unresolved by KamLAND

resolve

FC-NSI-tests at generic NuFact •

10 kt detector, 0.33 ν_{τ} detection eff above 4 GeV; no tau charge id needed

FCI-OSC CONFUSION THEOREM

a neutrino factory is less sensitive to θ_{13} because non-standard neutrino interactions are confused with oscillations

 2×10^{20} mu/yr/polarity \times 5 yr, 40 kt magn iron calorim, 10% muon E-resoln above 4 GeV

FCI-OSC CONFUSION THEOREM-2

Huber et al, PRD66, 013006 (2002)

90% CL reach on $\sin^2 2\theta_{13}$ (horizontal) vs NSI bounds (vertical)

Daselines700 km3000 km7000 km

norizontal black line is current NSI limit vertical grey band: sensitivity without NSI

LOW ENERGY SOLAR NEUTRINOS

two tasks for Borexino? KamLAND?

probe nu-magn moment
pd of Grimus et al, NPB648, 376 (2003)

• probe NSI Miranda et al hep-ph/0406280 JHEP

NSI-frag

new frontier ... θ_{13} , new neutral gauge bosons, etc

NSI with ELECTRONS

 $\nu - e$ scattering data constrain NSI parameters up to four-fold degeneracy (even

with just two NU free parameters) Barranco et. al. PRD73 (2006) 113001

can $ee \rightarrow \nu \nu \gamma$ from LEP help?

IMPROVING ON SOLAR

long-baselineexptusingfrench reactors& a detectorin Frejus underground lab

courtesy of T. Schwetz Global

IMPROVING ON ATM PARAMETERS

Huber et al PRD70 (2004) 073014

also CERN-MEMPHYS Campagne et al hep-ph/0603172

need long-baseline accelerator expts eg T2K Global

PATHWAYS TO NU-MASS \Rightarrow FIN

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

PATHWAYS TO NU-MASS \Rightarrow **FIN**

top-down vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

what is the scale ?

- GUT scale seesaw with low B-L scale
- Intermediate scale seesaw: P-Q, L-R ...
- Weak scale (inverse) seesaw

PATHWAYS TO NU-MASS \Rightarrow **FIN**

top-down vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

what is the scale ?

- GUT scale seesaw with low B-L scale
- Intermediate scale seesaw: P-Q, L-R ...
- Weak scale (inverse) seesaw

a theory of flavour?

PATHWAYS TO NU-MASS \Rightarrow **FIN**

top-down vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

what is the scale ?

- GUT scale seesaw with low B-L scale
- Intermediate scale seesaw: P-Q, L-R ...
- Weak scale (inverse) seesaw

a theory of flavour?

implications other than oscillations?

"generic": LFV $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, mu-e conversion in nuclei, ...

quasidegenerate nu-models \Rightarrow DBD, cosmo & tritium expts

"smoking gun": testing nu-mixing at LHC?

MNU FROM LOW–ENERGY SUSY

Diaz etal PRD68 (2003) 013009, PRD62 (2000) 113008; D65 (2002) 119901; PRD61 (2000) 071703

theoretical origin

http://ahep.uv.es/

models with spont RPV: Masiero and Valle, PLB251 (1990) 273

Diaz etal PRD68 (2003) 013009, PRD62 (2000) 113008; D65 (2002) 119901; PRD61 (2000) 071703

theoretical origin http://ahep.uv.es/

models with spont RPV: Masiero and Valle, PLB251 (1990) 273

TESTING NU-MIXING

AT ACCELERATORS, eg LHC

SPS

site

Prévessin

FRANCE

TESTING NU–MIXING at LHC/ILC

LSP decays lead to double vertices, e.g. at Tevatron

de Campos et al, PRD71 (2005) 075001

LSP decay properties correlate with nu-mixing angles
LHC will provide enough luminosity for detailed correlation studies
smoking gun test of SUSY origin of nu-mass
Porod et al PRD63 (2001) 115004

$$\frac{BR(\chi \to \mu W)}{BR(\chi \to \tau W)}$$
 vs \tan^2_{atm}

TESTING NU-MIXING at LHC/ILC

LSP decays lead to double vertices, e.g. at Tevatron

de Campos et al, PRD71 (2005) 075001

LSP decay properties correlate with nu-mixing angles
LHC will provide enough luminosity for detailed correlation studies
smoking gun test of SUSY origin of nu-mass
Porod et al PRD63 (2001) 115004

irrespective of the nature of the LSP

 $\frac{BR(\chi \to \mu W)}{BR(\chi \to \tau W)}$ vs \tan^2_{atm}

stau Hirsch et al, PRD66 (2002) 095006

others D68 (2003) 115007

SEESAW-TYPE NSI

Schechter, JV, PRD22 (1980) 2227 & D25 (1982) 774

seesaw-scale need not be high as # of $SU(2) \otimes U(1)$ singlets is arbitrary

far more angles and phases than for quarks

(i) Majorana phases

(ii) isodoublet-isosinglet mixing angles

effective deviations from unitarity in lepton mixing

CC & NC source of gauge-induced NSI

THETA13 AND KamLAND

\leftarrow

strong spectrum distortion

favors unphysical θ_{13} values

combination with solar further improves ...

NOISE & SOLAR ROBUSTNESS

noisy Sun

- neutrino propagation strongly affected by solar density noise Balantekin et al 95
- Nunokawa et al NPB472 (1996) 495 Burgess et al 97
- Burgess et al, Ap.J.588:L65 (2003)
- & JCAP 0401 (2004) 007
- Guzzo et al, Balantekin et al

despite such large distortion

determination is robust

Maltoni et al, hep-ph 0405172

SFP & SOLAR ROBUSTNESS

NON-STANDARD INTERACTIONS

⇐ Frag

FC or NU sub-weak strength dim-6 terms εG_F

can induce non-standard interactions

- oscillations of massless neutrinos in matter, which are E-independent, converting both neutrinos & anti-nu's, can be resonant in SNovae
- Wolfenstein; Valle PLB199 (1987) 432
- Roulet 91; Guzzo et al 91; Barger et al 91,...

they give excellent description of solar data Guzzo et al NPB629 (2002) 479

but can not be the leading mechanism, due to KamLAND

lead to new dark-side solar neutrino oscill solution

Non-Standard Interactions arise in most massive neutrino models, Prog. Part. Nucl. Phys. 26 (1991) 91

gauge NSI
and non-diagonal NC,arise in seesaw-type models rectangular CC lepton mixing matrix
PRD22 (1980) 2227

may lead to sizeable flavor and CPV even in massless neutrino limit

scalar NSI arise in radiative models of neutrino mass, Zee or Babu, etc

majoron emitting neutrino decays

Chikashige, Mohapatra, Peccei Schechter, JV PR D25 (1982) 774; JV PLB131 (1983) 87; Gelmini, JV, etc

DAY-NIGHT EFF. W/ 3 NEUTRINOS

Akhmedov, Tortola, JV, JHEP05 (2004) 057

