Models of Baryon Number Violation

Yasunori Nomura

UC Berkeley; LBNL

Why is proton decay so important? → Window to (very) high energy physics

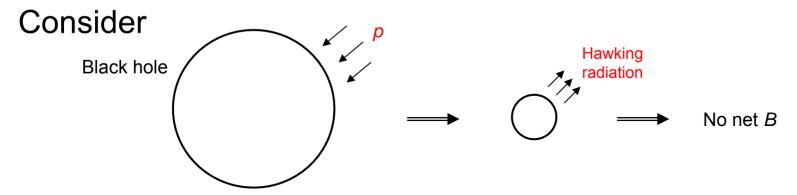
Does proton really decay?

Are the next generation experiments worth being pursued?

Important to understand (precisely) what we "know" and what we can "expect"

 \rightarrow interplay between theory and experiment

Try to illustrate this using (relatively) recent models of unification (proton decay)


Proton will decay

The baryon (B) and lepton (L) numbers in the SM

 \rightarrow accidental symmetries at low energies

(write down the most general Lagrangian $\rightarrow B$ and L)

B and L are not the "fundamental" symmetries

 \rightarrow Baryon number is violated

In quantum gravity, this process is occurring virtually

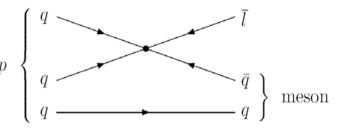
→ Proton does decay at some level

(unless killed by an additional symmetry "by hand")

Importance of "Models"

The proton is expected to decay anyway

\rightarrow Who cares models?


(Just go out and look for *p* decay ... it is already well motivated)

What is the rate?

In the SM,

$$\mathcal{L}_{p- ext{decay}} \sim rac{1}{M^2} q \, q \, q \, l$$

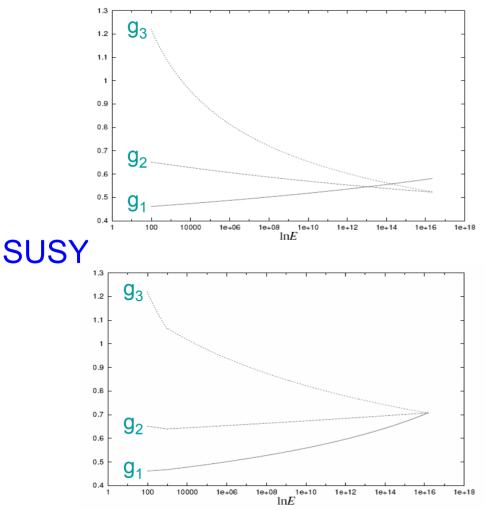
-1

The scale $M \sim$ (reduced) Planck scale $M_{\rm Pl} = 2 \times 10^{18} \, {\rm GeV}$

The lifetime is

$$\Gamma \approx \frac{1}{8\pi} \frac{m_p^5}{M_{\rm Pl}^4} \sim 10^{-75} \text{ GeV} \implies \tau \sim 10^{43} \text{ years}$$

→Yes, the proton decays, but at the rate is outside the expected reach Proton decay from grand unification Proton decay will be out of reach unless there is new physics below M_{PI} Is there a well-motivated candidate? Grand Unification


 $\begin{array}{cccc} SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} & SU(5) & SO(10) \\ & q(\mathbf{3}, \mathbf{2})_{1/6} \\ & u^{c}(\mathbf{3}^{*}, \mathbf{1})_{-2/3} \\ & e^{c}(\mathbf{1}, \mathbf{1})_{1} \\ & d^{c}(\mathbf{3}^{*}, \mathbf{1})_{1/3} \\ & l(\mathbf{1}, \mathbf{2})_{-1/2} \\ & n^{c}(\mathbf{1}, \mathbf{1})_{0} & \longrightarrow N(\mathbf{1}) \end{array} \right\} \ \psi(\mathbf{16})$

Predictions:

- 3 forces of the SM unified at a high energy scale M_{GUT}
- Proton decay caused by exchange of GUT bosons: $M \sim M_{GUT} \rightarrow For M_{GUT} < M_{PI}$, *p* decay may be within reach

Grand unification works (only) with supersymmetry

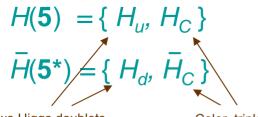
Non-SUSY

Supersymmetry (SUSY)

Superparticle at ~ TeV

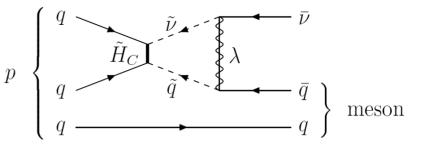
- stabilizes the weak scale
- change the RGEs for $g_{1,2,3}$

R parity


• the existence of dark matter

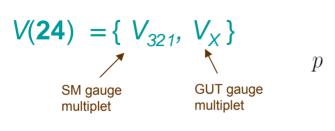
 $M_{\rm GUT} \sim 2 \ge 10^{16} \text{ GeV}$

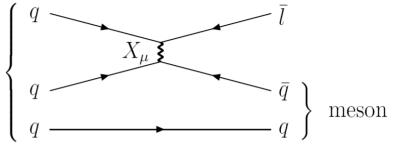
Proton decay in SUSY GUTs


Dimension five (d=5):

color triplet Higgsino exchange

Two Higgs doublets of the SUSY SM


Color triplet Higgs fields



dominantly $p \rightarrow K^+ \overline{\nu}$

Dimension six (*d*=6):

GUT gauge boson exchange

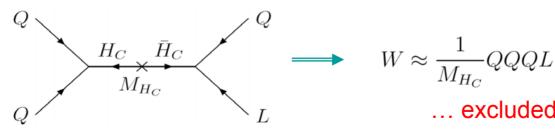
dominantly $p \rightarrow e^+\pi^0$

Dilemma after Super-K

The minimal SUSY SU(5) GUT is "excluded" Gauge coupling unification $\rightarrow 3.5 \times 10^{14} \text{ GeV} < M_{H_C} < 3.6 \times 10^{15} \text{ GeV}$ $d=5 \text{ proton decay} \rightarrow M_{H_C} > 9.0 \times 10^{17} \text{ GeV} \left(\begin{array}{c} \tau_{p \rightarrow K^+ \bar{p}} > 2.3 \times 10^{33} \text{ years} \\ m_{\text{SUSY}} \sim \text{TeV} \end{array} \right)$ $\rightarrow \text{ contradicting}$ e.g. Murayama, PierceDoes this exclude SUSY GUTs? ... certainly not, but it leads to a dilemma for p decay exp.

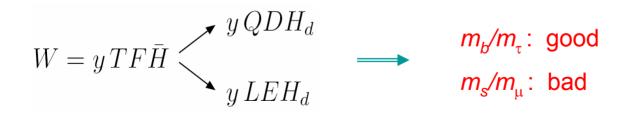
Suppose *d*=5 proton decay is absent for some reason The proton then decays by *d*=6 (gauge boson exchange)

 $M_{\rm GUT} \sim 2 \ge 10^{16} \, {\rm GeV} \implies \tau \sim 10^{35} - 10^{36} \, {\rm years}$


... *p* decay may be out of reach

Is it reasonable to "expect" *p* decay in future exp.? (should we go to "exotics"?)

• Gauge breaking & Doublet-triplet splitting Why $M_{H_c} \gg M_{H_{u,d}}$? $W = H (M_u + \lambda \Sigma) \overline{H}$

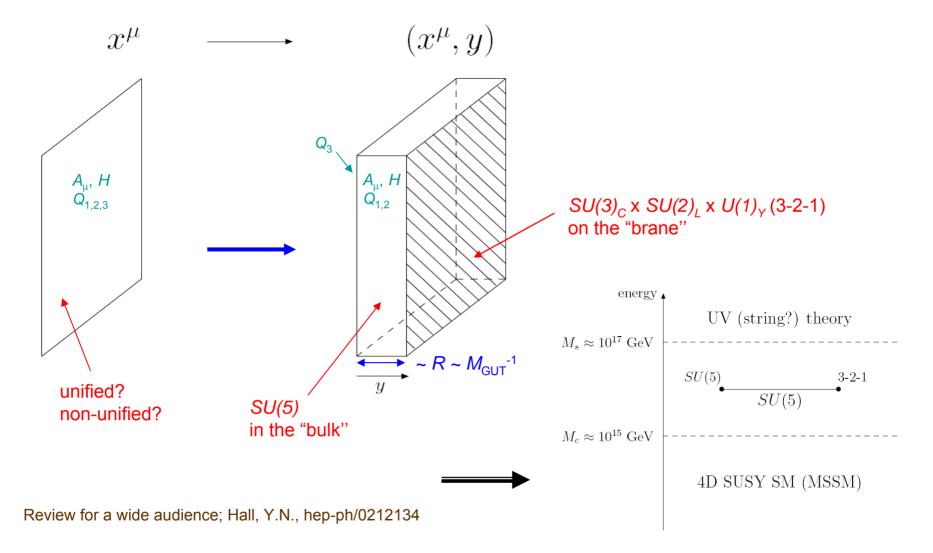

$$\langle \Sigma \rangle = \begin{pmatrix} 2 & & \\ & 2 & \\ & & -3 & \\ & & & -3 \end{pmatrix}_{V_{\Sigma}} \implies \begin{cases} M_{H_C} = M_H + 2\lambda V_{\Sigma} \sim M_{GUT} \\ M_{H_{u,d}} = M_H - 3\lambda V_{\Sigma} \ll M_{GUT} \\ & & \dots \text{ extreme fine-tuning} \end{cases}$$

• *d*=5 proton decay

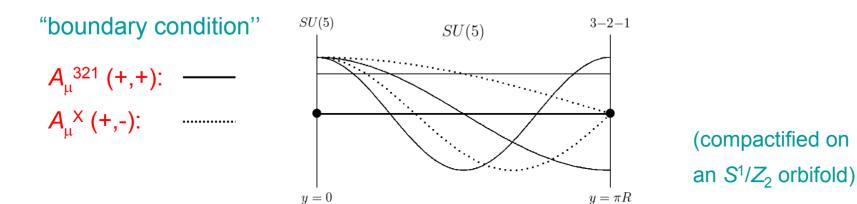
... excluded by Super-Kamiokande

... The minimal SUSY GUT is not "fully realistic"

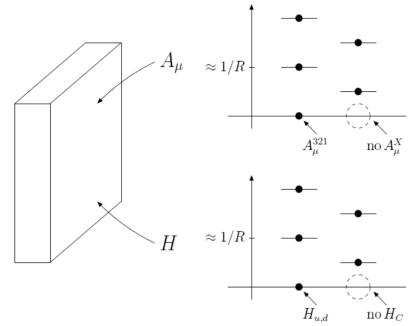
Predictions/expectations for proton decay must be considered in the context of "realitic" models


Possible to do in the framework of 4D SUSY GUTs typically very complicated --- large representations, special potentials, ... (although some recent progresses)

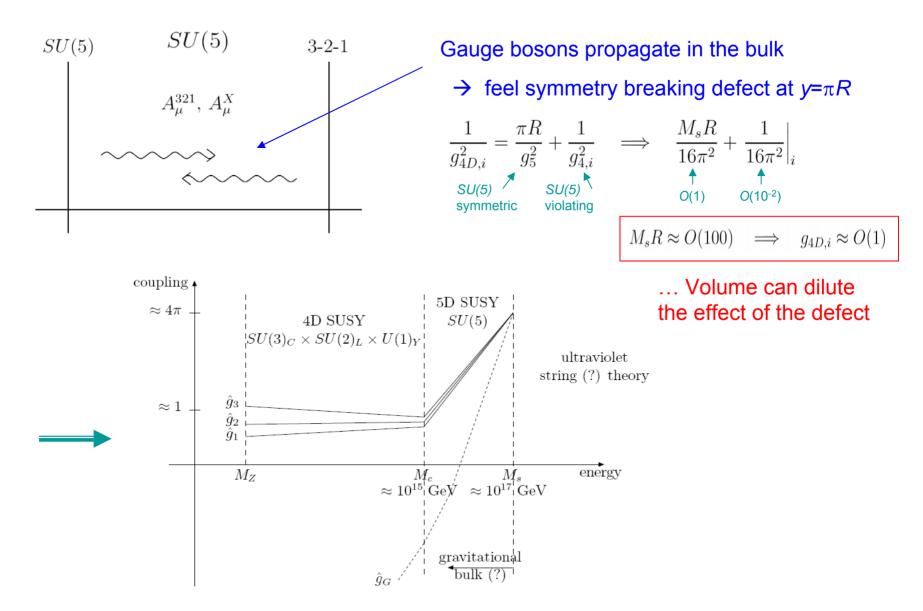
Something crucial seems to be missing

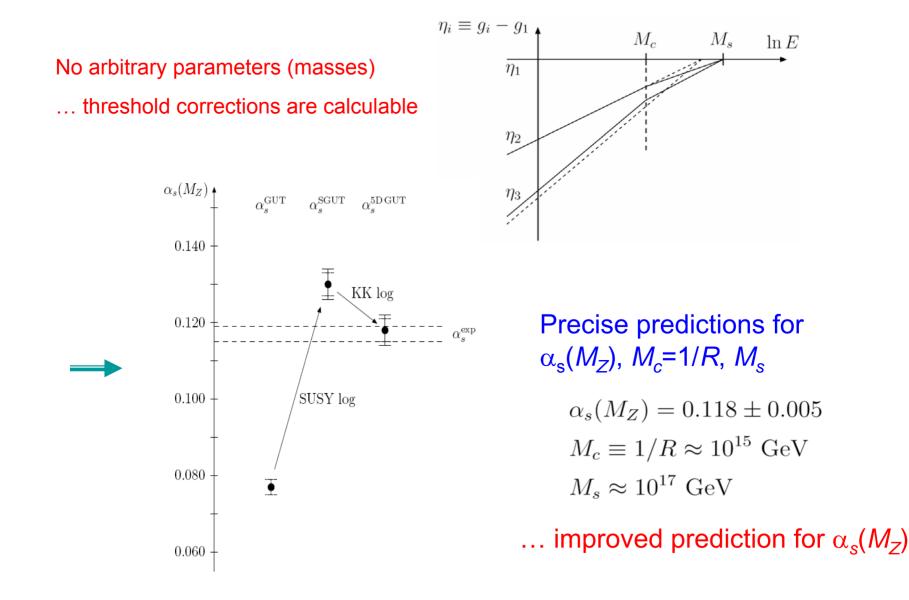

Grand unification in higher dimensions

The basic framework


Hall, Y.N.; Kawamura ('00 - '02)

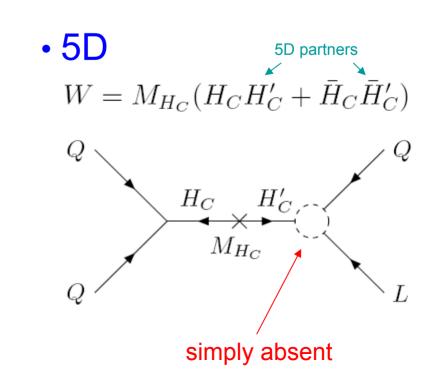
Consistent quantum theory


From 4 dimensional point of view,


Gauge breaking & doublet-triplet splitting

... automatic

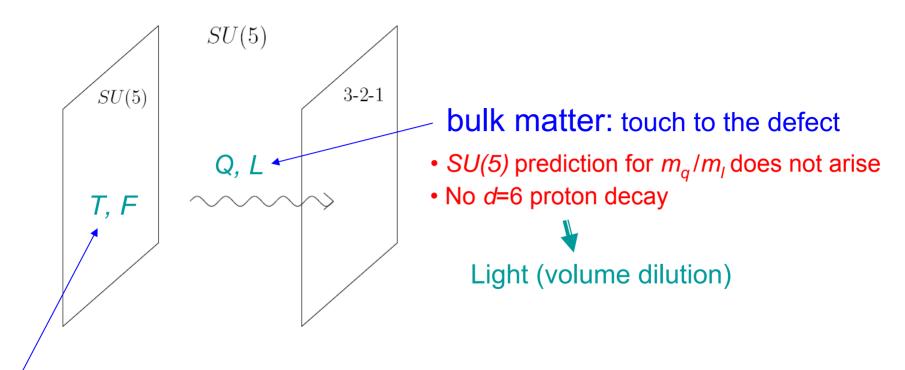
Gauge coupling unification preserved


Precision unification prediction

Suppressed d=5 proton decay

 $W = M_{H_C} H_C \bar{H}_C$

• 4D



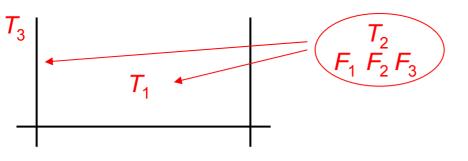
U(1)_R symmetry
 T(1), F(1), H(0), H(0), H'(2), H'(2), ...

... *d*=5 proton decay does not arise

Matter fields

• Matter fields can be either on a brane or in the bulk

brane matter: locally SU(5) symmetric


• SU(5) prediction for m_q/m_l holds

Heavy (no volume dilution)

... Successful correlation

Flavor physics: matter geography

- T_1 in the bulk $(M_X = 1/2R \sim 10^{15} \text{ GeV})$
- T_3 on the brane (top Yukawa coupling)

• b/τ unification $\longrightarrow F_3$ on the

• s/μ , d/e mass ratio \longrightarrow either T_2 or F_2 in the bulk

Example)

 T_3

.. realistic fermion masses

Implications on proton decay

- No d=4 or d=5 proton decay
- No d=6 proton decay at leading order (T_1 in the bulk)

d=6 proton decay occurs through flavor mixing / brane op.

Y.N.; Hebecker, March-Russell

CKM / volume suppressed, but

 $M_X = 1/(2R) \sim 10^{15} \text{ GeV} < M_{GUT} \sim 2 \times 10^{16} \text{ GeV}$

 \rightarrow A variety of final states with the rates within reach

Example)

Proton decay as a probe of geometry at the unification scale!

Conclusions

- Proton decay --- window for extremely high energies
- Despite the non-discovery at Super-K (so far), there are possibilities of discovery in "near" future (Prospect for *p* decay should be discussed in realistic models)
- Grand unification in higher dimensions
 p decay final states ←→ geometry of extra dim. *R* ~ *M*_{GUT}⁻¹
- Important to push limits on all possible decay modes: p → e⁺π⁰, μ⁺π⁰, e⁺K⁰, μ⁺K⁰, π⁺ν̄, K⁺ν̄, ...
- Next generation nucleon decay experiments ----"unique" opportunity to explore super-high energies

(cf. superparticle masses in gravity mediation)